共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
FDFCC工艺降低催化裂化汽油烯烃含量 总被引:7,自引:1,他引:6
FDFCC工艺是降低催化汽油烯烃含量的有效技术。论述了该工艺的技术特点、流程设计和工业应用情况。工业应用结果表明,该工艺可使烯烃体积分数降低30个百分点左右,硫含量下降20%左右,改质汽油诱导期增加,MON和RON略有增加,并且苯含量基本维持不变,芳烃含量远远小于规定指标40%。 相似文献
3.
汽油中存在的烯烃、硫是造成环境污染的主要因素,降低汽油中的烯烃和硫含量有FCC工艺方法、加氢改质和利用催化剂以及助剂等方式。FCC降烯烃工艺技术,烯烃降低幅度大,但汽油收率低,柴油的十六烷下降;加氢技术可有效降低汽油烯烃和脱硫,但投资较高;利用FCC催化剂与助剂技术,依托FCC装置可有效地降低汽油烯烃和硫含量。 相似文献
4.
焦化汽油的催化裂化改质 总被引:5,自引:1,他引:5
报道焦化汽油催化裂化改质的工业试验结果,将11%-15%的焦化气油注入提升管预提升段与胜利管输VGO,CGO和VR混炼,经催化改质后,辛烷值可以达到90号汽油指标的要求,并可获得满意的产品分布,同时催化汽油的改质可明显降低催化汽油的烯烃含量,为焦化汽油利用找到了一条经济可行的途径。 相似文献
5.
6.
汽油中存在的烯烃、硫是造成环境污染的主要因素,降低汽油中的烯烃和硫含量有FCC工艺方法、加氢改质和利用催化剂以及助剂等方式。FCC降烯烃工艺技术,烯烃降低幅度大,但汽油收率低,柴油的十六烷下降;加氢技术可有效降低汽油烯烃和脱硫,但投资较高;利用 FCC催化剂与助剂技术,依托 FCC装置可有效地降低汽油烯烃和硫含量。 相似文献
7.
催化裂化汽油催化改质降烯烃反应规律的试验研究 总被引:11,自引:1,他引:10
利用催化裂化催化剂在小型提升管催化裂化装置上对催化裂化汽油催化改质降烯烃过程的反应规律进行了试验研究,详细考察了反应温度、剂油比、反应时间、催化剂活性以及催化剂类型对催化裂化汽油改质降烯烃过程的影响。试验结果表明,随着反应温度、剂油比、反应时间以及催化剂活性的增加,改质汽油烯烃含量降低的幅度增加。催化裂化汽油改质后,烯烃含量大幅下降,异构烷烃和芳烃含量有较大幅度的增加,烯烃含量可以降低到汽油新标准的要求,辛烷值基本维持不变,并且汽油收率高,液体收率维持在98.5%以上,(干气 焦炭)产率损失小。 相似文献
8.
FCC汽油加氢改质工艺研究开发进展 总被引:3,自引:0,他引:3
综述了FCC汽油加氢改质工艺的研究开发进展,分析比较了各种工艺的特点及其适用范围,指出了目前汽油改质技术研究开发存在的问题,认为加氢异构与芳构相结合的脱硫、降烯烃、恢复辛烷值技术将是FCC汽油改质技术今后的发展趋势。 相似文献
9.
中国石油天然气集团公司对催化裂化汽油PONA组成和反应机理进行深入分析,通过实验室研究,开发出催化汽油辅助反应器改质降烯烃技术,使催化汽油中的烯烃发生氢转移、芳构化、异构化或裂化,烯烃含量显著降低,而辛烷值基本不变。这项成果被列为中国石油集团2004年十大科技进展之一。 相似文献
10.
低品质汽油的催化改质 总被引:1,自引:0,他引:1
直馏汽油和焦化汽油属于辛烷值较低的低品值汽油。经裂化催化剂催化改质后,C3~C4产率可以达到30%~40%,其中C_3= C_4=约占60%~70%。催化改质后,汽油族组成发生变化,烷烃和环烷烃含量降低,芳烃含量大幅度增加,从而使汽油的MON提高10~20个单位。 相似文献
11.
在自制的微反-色谱联合实验装置上,改变反应温度、停留时间、剂油比等反应条件,考察了助剂LBO-A对抚顺催化裂化汽油改质反应的影响。以LBO-A助剂为催化剂时,催化裂化汽油改质反应的优化操作条件为:反应温度420℃~450℃,停留时间0.024s,剂油比6。在450℃的优化条件下,催化裂化汽油改质后,烯烃质量分数由40.74%降至25.80%,异构烷烃和芳烃含量有较大幅度的增加,计算辛烷值RON提高了5.48个单位,汽油收率降低了14.25个百分点,液化气收率提高了13.52个百分点。 相似文献
12.
13.
催化裂化汽油改质降烯烃反应过程规律的研究 总被引:7,自引:4,他引:7
利用裂化催化剂在微反-色谱联合装置、小型固定流化床试验装置和小型提升管催化裂化试验装置上,对催化裂化汽油改质降烯烃过程的反应规律进行了研究。结果表明,催化裂化汽油改质降烯烃过程的产物分布与烯烃含量的降低幅度(烯烃转化率)存在着较好的关联性,说明无论在何种反应条件下采用何种催化剂,只要催化裂化汽油改质后烯烃含量降低,就要付出产生一定量的干气和焦炭的代价,且两者存在着基本对应的关系。随着烯烃转化率的提高,催化裂化汽油改质后烯烃含量降低的幅度增加,C3 液体收率及汽油收率降低,说明C3 液体收率及汽油收率与汽油烯烃降低幅度是相互制约的。在同样的反应条件下,高碳数烯烃的反应活性要高于低碳数烯烃的反应活性。 相似文献
14.
二甲苯异构化催化剂RIC-200长周期运行分析 总被引:2,自引:0,他引:2
二甲苯异构化装置催化剂的稳定性对装置长周期稳定运行起到关键作用。影响二甲苯异构化催化剂寿命的主要因素包括催化剂性能、原料性质、再生、工艺条件和装置稳定性。结合中国石化海南炼油化工有限公司一期芳烃装置长周期运转情况,对RIC-200催化剂性能稳定性进行了分析,催化剂初始活性高、原料杂质控制好、再生烧焦过程平稳、工艺参数调整合理等有助于提高催化剂稳定性。提出了延长二甲苯异构化催化剂使用寿命的建议,为提高芳烃联合装置长周期稳定运行提供借鉴。 相似文献
15.
氮对催化裂化汽油中烯烃加氢饱和反应的影响 总被引:1,自引:0,他引:1
采用硅胶吸附脱除原料中氮化物,得到氮含量不同而硫含量及烃类组成基本相同的4种催化裂化汽油原料。为了考察氮化物对催化裂化汽油选择性加氢脱硫过程烯烃加氢饱和反应(HYDO)的影响,在反应温度285 ℃、氢分压1.6 MPa、体积空速4.0 h-1及氢油体积比400的条件下,采用Co-Mo/Al2O3催化剂在中型固定床试验装置上进行了4种催化裂化汽油原料选择性加氢脱硫试验。结果表明,在催化裂化汽油选择性加氢脱硫过程中,氮化物对HYDO有明显的抑制作用;对直链烯烃和环烯烃加氢饱和反应抑制作用明显,但对支链烯烃加氢饱和反应抑制作用较小。硫含量和烃类组成相同的原料,烯烃饱和率相同时,氮含量较高的原料加氢产物研究法辛烷值比氮含量较低的原料加氢产物研究法辛烷值损失小。 相似文献
16.
采用微反-色谱联合的方法,考察了反应温度、反应时间及催化剂活性对哈尔滨炼油厂流化催化裂化汽油催化裂解的产品分布、低碳烯烃(乙烯、丙烯和丁烯)产率和产品汽油族组成的影响。结果表明,在反应温度590℃、剂油比170、反应时间0.24s的实验条件下,FCC汽油经催化改质后,烯烃含量大幅度下降,可由改质前的41.6%降到改质后的13.4%,满足汽油新标准的要求,而异构烷烃和芳烃含量有较大幅度增加,分别由改质前的33.3%、13.3%增到40.4%、35.7%,使汽油在降低烯烃含量的同时,辛烷值不会降低,并且还会增加低碳烯烃的产率。此外,提高反应温度、延长反应时间、提高催化剂活性均有利于降低改质汽油的烯烃含量,增产低碳烯烃。 相似文献
17.