首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-stage power factor correction (PFC) AC/DC converters integrate a boost-derived input current shaper (ICS) with a flyback or forward DC/DC converter in one single stage. The ICS can be operated in either discontinuous current mode (DCM) or continuous current mode (CCM), while the flyback or forward DC/DC converter is operated in CCM. Almost all single-stage PFC AC/DC converters suffer from high bulk capacitor voltage stress and extra switch current stress. The bulk capacitor voltage feedback with a coupled winding structure is widely used to reduce both the voltage and current stresses in practical single-stage PFC AC/DC converters. This paper presents a detailed analysis of the bulk capacitor voltage feedback, including the relationship between bulk capacitor voltage, input current harmonics, voltage feedback ratio, and load condition. The maximum bulk capacitor voltage appears when the DC/DC converter operates at the boundary between CCM and DCM. This paper also reveals that only the voltage feedback ratio determines the input current harmonics under DCM ICS and CCM DC/DC operation. The theoretical prediction of the bulk capacitor voltage as well as the predicted input harmonic contents is verified experimentally on a 60 W AC/DC converter with universal-line input  相似文献   

2.
This paper discusses the use of printed circuit board (PCB) integrated inductors for low power DC/DC buck converters. Coreless, magnetic plates and closed core structures are compared in terms of achievable inductance, power handling and efficiency in a footprint of 10 /spl times/ 10 mm/sup 2/. The magnetic layers consist of electroplated NiFe, so that the process is fully compatible with standard PCB process. Analytic and finite element method (FEM) methods are applied to predict inductor performance for typical current waveforms encountered in a buck converter. Conventional magnetic design procedures are applied to define optimum winding and core structures for typical inductor specifications. A 4.7 /spl mu/H PCB integrated inductor with dc current handling of up to 500 mA is presented. This inductor is employed in a 1.5 W buck converter using a commercial control integrated circuit (IC). The footprint of the entire converter measures 10 /spl times/ 10 mm/sup 2/ and is built on top of the integrated inductor to demonstrate the concept of integrated passives in power electronic circuits to achieve ultra flat and compact converter solutions.  相似文献   

3.
文中主要研究的对象是开环控制的交错并联BOOST PFC,且工作于临界续断模式,它的从变换器与主变换器在开通时同步,且主从变换器都工作在电流模式。文章指出只有这种主从方式能提供一个稳定的开环工作点。仿真实验设计了一台输入功率为400W,宽范围输入电压,400V输出电压的实验样机,实验结果验证了理论分析的正确性。  相似文献   

4.
This paper presents a novel modulation strategy for a power factor corrected (PFC), isolated AC/DC converter derived from the integration of a nonisolated, two switch buck-boost AC/DC converter with an isolated dual active bridge DC/DC converter (2SBBDAB). This strategy, termed discontinuous leading/trailing edge (DLTE) modulation, serves to maximize the duty cycle of the input switch while keeping the current in the buck-boost inductor discontinuous. Hence, the crest factors of the currents in the switching devices are minimized, the input switch is turned on at zero current and the zero-voltage switching ranges of the bridge switches are unaffected by the integration. A conventional isolated, PFC AC/DC converter typically consists of a boost converter cascaded with a forward converter. The ratings required of the power switching devices of the 2SBBDAB employing the DLTE modulation strategy are similar to those required of the conventional design for wide line voltage operation. However, the 2SBBDAB converter has higher line voltage surge immunity than that of the conventional design and, unlike the conventional design, it has inherent inrush current limiting. The DLTE modulation strategy may be applied to the family of converters composed of the two switch buck-boost integrated with half and full-bridge forward converters  相似文献   

5.
A compact size and high efficiency single-inductor dual-output (SIDO) DC–DC converter is proposed. The proposed SIDO DC–DC converter not only provides dual output sources (one buck and one boost outputs) but also has minimized cross regulation without using any external compensation components. Generally speaking, it is important to minimize the number of components and footprint area in the design of SIDO converters. However, usually large external compensation resistors and capacitors are required to stabilize DC–DC converters. Importantly, our proposed hysteresis mode operation can effectively avoid the oscillation problems that may exist in many SIMO designs. Furthermore, the dynamic dc current level like that in the continuous conduction mode (CCM) operation can make the proposed SIDO DC–DC converter achieve high conversion efficiency at light loads owing to small conduction loss. Experimental results show a high efficiency from 85% at light loads to 94% at heavy loads.  相似文献   

6.
A new single-stage single-switch input-current-shaping (S4 ICS) technique, which combines the boost-like input-current shaper with a continuous-conduction-mode (CCM) DC/DC output stage, is described. In this technique, the boost inductor can operate in both the discontinuous conduction mode (DCM) and CCM. Due to the ability to keep a relatively low voltage (<450 VDC) on the energy-storage capacitor, this technique is suitable for the universal line-voltage applications. The voltage on the energy-storage capacitor is kept within the desirable range by the addition of two transformer windings. The principle of operation of the S4ICS circuit with a forward DC/DC converter is presented. Experimental results obtained on a 100 W (5 V/20 A) prototype circuit are also given  相似文献   

7.
A new zero voltage switching (ZVS) boost converter is presented in this paper. By using an auxiliary switch and a capacitor, ZVS for all switches is achieved with an auxiliary winding in one magnetic core. A small diode is added to eliminate the voltage ringing across the main rectifier diode. This clamping technique can also be utilized in other dc-dc converters, and a family of new ZVS dc-dc converter is derived. A prototype (500 W/193 kHz) is made to verify the theoretical analysis. The efficiency is higher than 94% at 90-V input at full load  相似文献   

8.
The evolution of computer-aided design tools has extended the capabilities of a designer by pushing the optimality of complex circuits beyond the ad hoc manual implementation. This work presents a framework to co-optimize the circuit and the layout parameters of fully integrated inductive DC–DC converters. The framework comprises expensive optimization that is speeded up by active learning sample selection and evolutionary techniques to acquire an optimal converter. A tapered inductor topology is used to increase the quality of the on-chip inductor and to improve the efficiency of the overall monolithic DC–DC converter. The optimization framework is validated by co-optimizing the design parameters and the tapered inductor layout for a fully-integrated DC–DC boost converter in a 0.13 μm CMOS technology. The power loss in the circuit is reduced with 27 % resulting in a 7 % efficiency improvement, compared to a fully-integrated DC–DC boost converter with a regular inductor topology.  相似文献   

9.
A new family of isolated, zero voltage switched power converters which utilizes the magnetizing inductance of the transformer to achieve zero voltage turn-on of the primary switches is proposed. By employing saturable inductor(s) on the secondary side, soft turn-off of the output rectifier(s) is obtained with a minimum circulating energy flowing through the power converter. The proposed converters can operate either with a variable or a constant switching frequency. A complete DC analysis and design guidelines for the half-bridge topology are described, and the performance of a 100 W experimental power converter is presented  相似文献   

10.
非线性载波控制针对开关变换器固有的非线性在控制信号中引入非线性载波,能够达到高功率因数和输出电压快速调节的控制效果。针对仅检测电感电流实现非线性载波控制的目的,结合了目前研究的新进展,以升压变换器为控制对象研究了使用线性斜率跟随器简化控制器检测电路的电路实现,建立了控制器电流环路的小信号模型并进行了Matlab仿真。改进后的控制器不仅保留了非线性载波控制原有的优点,更简化了检测电路并易于在集成电路中实现。  相似文献   

11.
A single-stage single-switch power-factor-correction (PFC) AC/DC converter with universal input is presented in this paper. The PFC can be achieved based upon the charge-pump concept, and the PFC stage operates in the continuous current mode (CCM). The switch has less current and voltage stresses over a wide range of load variation so that a low-voltage rating device can be used. The presented converter features high power factor, high efficiency, and low cost. An 80-W prototype was implemented to show that it has 85% efficiency with low-voltage stress from 0.5% to 100% load variation over universal line input  相似文献   

12.
DC voltage sensorless single-phase PFC converter   总被引:2,自引:0,他引:2  
We propose a simple DC voltage sensorless single phase PFC converter by detecting an AC line voltage waveform. Both DC voltage and AC current sensors used in the conventional PFC converter are not required to construct the control system. The conventional converter circuit with a boost chopper circuit in the DC side from a rectifier circuit is used as the main PFC converter circuit. In the control system, the circuit parameters such as a series inductance L and equivalent load resistance value R/sub d/ are used to generate the sinusoidal current waveform. The DC voltage is directly controlled by the command input signal k/sub d/(=E/sub d//E/sub a/) for the boost chopper circuit. The DC voltage regulation is small because of the feed forward control for the AC line voltage E/sub a/ and no dependence of the circuit parameters. The sinusoidal current waveform in phase with the AC line voltage can be obtained. The feasibility of the proposed control system is verified by some simulation and experimental results.  相似文献   

13.
无直流电压传感器的单相APFC变换器   总被引:1,自引:0,他引:1  
文章对一种只检测交流输入电压而不需要检测输出直流电压的简化单相PFC变换器进行了理论分析和研究。在构建控制电路时,不需要常规PFC变换器中的输出电压传感器和输入电流传感器。PFC变换器的主电路为整流电路的直流侧接一级Boost电路。在控制电路中,使用电感L、等效负载电阻Rd等电路参数产生正弦电流波形基准,输出电压直接由控制量Kd(=Ed/Ea)来调节。通过控制,可以得到恒定的直流输出电压和与交流输入电压同相位的正弦电流波形。仿真结果证明了该变换器的可行性。  相似文献   

14.
This paper presents a magnetic integration approach that reduces the number of magnetic components in a power supply by integrating magnetic components in two conversion stages. Specifically, in the proposed approach, a single transformer is used to implement the continuous-conduction-mode boost power-factor-corrected (PFC) converter and the dc/dc flyback converter. The integrated boost and flyback converters offer soft switching of all semiconductor switches including a controlled di/dt turn-off rate of the boost rectifier. The performance of the proposed approach was evaluated on a 150-kHz, 450-W, universal-line range boost PFC converter with 12-V/2.2-A integrated stand-by flyback converter.  相似文献   

15.
This paper presents the analysis of open-loop power-stage dynamics relevant to current-mode control for a boost pulsewidth-modulated (PWM) dc-dc converter operating in continuous-conduction mode (CCM). The transfer functions from input voltage to inductor current, from duty cycle to inductor current, and from output current to inductor current are derived. The delay from the MOSFET gate drive to the duty cycle is modeled using a first-order Pade/spl acute/ approximation. The derivations are performed using an averaged linear small-signal circuit model of the boost converter for CCM. The transfer functions can be used in modeling the complete boost PWM converter when current-mode control is used. The theory was in excellent agreement with the experimental results, enforcing the validity of the transfer functions derived.  相似文献   

16.
提出了一种基于双全桥结构的单向零电流开关大功率(兆瓦级)DC/DC变换器,该变换器通过采用两个全桥变换器来实现零电流开关,实现了较低的功率损耗和输出滤波电感。为了验证提出的变换器在大功率应用中的有效性,构建了小型样机并在大功率直流电网进行了实际测试。实验证明,相比传统的两种单向大功率全桥变换器,提出变换器所需的滤波电感和半导体器件的功率损耗均较少,分别仅为1.72mH和924.5kW。  相似文献   

17.
In this paper, a new parallel-connected single phase power factor correction (PFC) topology using two flyback converters is proposed to improve the output voltage regulation with simultaneous input power factor correction and control. This approach offers lower cost and higher efficiency by parallel processing of the total power. Flyback converter-I primarily regulates output voltage with fast dynamic response and processes 55% of the power. Flyback converter-II with ac/dc PFC stage regulates input current shaping and PFC, and processes the remaining 45% of the power. This paper presents a design example and circuit analysis for 200 W power supply. A parallel-connected interleaved structure offers smaller passive components, less losses even in continuous conduction inductor current mode, and reduced volt-ampere rating of dc/dc stage converter. TI-DSP, TMS320LF2407, is used for implementation. Simulation and experimental results show the performance improvement.  相似文献   

18.
A novel active snubber for high-power boost converters   总被引:3,自引:0,他引:3  
A technique which improves the performance of the boost converter by reducing the reverse-recovery-related losses in the boost switch and rectifier with an active snubber that is implemented with a minimum number of components is presented. This minimum-component-count snubber consists of a snubber inductor, an auxiliary switch, and a rectifier. The proposed technique reduces the reverse-recovery-related losses by controlling the turn-off di/dt rate of the rectifier current with the snubber inductor connected in series with the boost switch and rectifier. The voltage and current stresses of the components in the proposed active-snubber boost converter are similar to those in its conventional “hard-switched” counterpart  相似文献   

19.
A novel power factor correction (PFC) cell, called flyboost, is presented. The proposed PFC cell combines power conversion characteristics of conventional flyback and boost converters. Based on the flyboost PFC cell, a new family of single-stage (S/sup 2/) ac/dc converters can be derived. Prominent features of newly derived S/sup 2/ converters include: three power conversions, i.e., boost, flyback, and another isolated dc/dc power conversions are simultaneously realized that typically uses only one power switch and one simple controller; part of the power delivered to the load is processed only once; bulk capacitor voltage can be clamped to the desired level; and capable of operating under continuous current mode. Experimental results on example converters verify that while still achieving high power factor and tight output regulation, the flyboost PFC cell substantially improve the efficiency of the converter.  相似文献   

20.
为解决传统三相单开关功率因数校正器输入电流谐波较大的问题,设计了一种新型拓扑结构的三相单开关升压型PFC(Power Factor Correction)电路。通过在Boost电感和整流桥之间插入合适电容构成二阶滤波器,虽然控制算法不变,但可以在保证功率因数不变的前提下优化输入电流THD(Total Harmonic Distortion)。基于对电路原理的简要分析,建立Matlab仿真模型,再以TMS320F28335为控制核心,搭建Boost PFC 变换器的实验平台。仿真和实验均表明该方案可行,实验电路测试的输入电流THD值小于10%,具有实际应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号