首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The beta- and gamma-dicalcium silicate (β- and γ-Ca2SiO4) ceramics were prepared by sintering β-Ca2SiO4 greens at 1100, 1300, and 1450 °C, respectively, after compacting with cold isostatic pressure. The phase transition from β- to γ-phase of polymorphic ceramics occurred at 1100–1300 °C. Bending strength and Vickers hardness of β-Ca2SiO4 ceramic sintered at 1100 °C were only 25.6 ± 3.8 MPa and 0.41 ± 0.05 GPa. In contrast, the mechanical properties of the γ-Ca2SiO4 were improved remarkably when the ceramics were sintered at 1450 °C, corresponding to bending strength, 97.1 ± 6.7 MPa; Vickers hardness, 4.34 ± 0.35 GPa, respectively. The ceramics were soaked in the simulated body fluid (SBF) for various periods were characterized by SEM, XRD, FTIR, and EDS analysis, and the results indicated that the carbonated hydroxyapatite (CHA) was formed on the surface of the ceramics within 3 days. In addition, cell attachment assay showed that the ceramics supported the mesenchymal stem cells adhesion and spreading, and the cells established close contacts with the ceramics after 1 day of culture. These findings indicate that the γ-Ca2SiO4 ceramic possesses good bioactivity, biocompatibility and mechanical properties, and might be a promising bone implant material.  相似文献   

2.
《Ceramics International》2016,42(10):12276-12282
The chemical synthesis of nickel manganite powder was performed by a complex polymerization method (CPM). The obtained fine nanoscaled powders were uniaxially pressed and sintered at different temperatures: 1000–1200 °C for 2 h, and different atmospheres: air and oxygen. The highest density was obtained for the sample sintered at 1200 °C in oxygen atmosphere. The energy for direct band gap transition (Eg) calculated from the Tauc plot decreases from 1.51 to 1.40 eV with the increase of the sintering temperature. Indentation experiments were carried out using a three-sided pyramidal (Berkovich) diamond tip, and Young's modulus of elasticity and hardness of NTC (negative temperature coefficient) ceramics at various indentation depths were calculated. The highest hardness (0.754 GPa) and elastic modulus (16.888 GPa) are exhibited by the ceramics sintered at highest temperature in oxygen atmosphere.  相似文献   

3.
《Ceramics International》2017,43(17):14683-14692
Cordierite-silica bonded porous SiC ceramics were fabricated by infiltrating a porous powder compact of SiC with cordierite sol followed by sintering at 1300–1400 °C in air. The porosity, average pore diameter and flexural strength of the ceramics varied 30–36 vol%, ~ 4–22 µm and ~ 13–38 MPa respectively with variation of sintering temperature and SiC particle sizes. In the final ceramics SiC particles were bonded by the oxidation-derived SiO2 and sol-gel derived cordierite. The corrosion behaviour of sintered SiC ceramics was studied in acidic and alkaline medium. The porous SiC ceramics were observed to exhibit better corrosion resistance in acid solution.  相似文献   

4.
Fabrication of Ni4Nb2O9 ceramics via a reaction-sintering process was investigated. A mixture of raw materials was sintered into ceramics by bypassing calcination and subsequent pulverization stages. Ni4Nb2O9 phase appeared at 1300 °C and increased with increasing soak time. Ni4Nb2O9 content was found >96% in 1350 °C/2 h sintering pellets. A density of 5.71 g/cm3 was obtained for pellets sintered at 1350 °C for 2 h. This reaches 96.5% of the theoretical density. As the sintering temperature increased to 1350 °C, an abnormal grain growth occurred and grains >100 μm could be found. ?r of 15.4–16.9 are found in pellets sintered at 1200–1300 °C. Q × f increased from 9380 GHz in pellets sintered at 1200 °C to 14,650 GHz in pellets sintered at 1250 °C.  相似文献   

5.
《Ceramics International》2016,42(15):16897-16905
Heterogeneous ceramics made of cordierite (55–56 wt%), mullite (22–33 wt%) and alumina (23–11 wt%) were prepared by sintering non-standard raw materials containing corundum, talc, α-quartz, K-feldspar, kaolinite and mullite with small amounts of calcite, cristobalite and glass phases. The green specimens prepared by PVA assisted dry-pressing were sintered within the temperature range of 950–1500 °C for different dwelling times (2–8 h). The effects of sintering schedule on crystalline phase assemblage and thermomechanical properties were investigated. The sintered ceramics exhibited low coefficients of thermal expansion (CTE) (3.2–4.2×10−6 °C−1), high flexural strength (90−120 MPa and high Young modulus (100 GPa). The specimens sintered at 1250 °C exhibited the best thermal shock resistance (∆T~350 °C). The thermal expansion coefficients and thermal shock resistance were studied using Schapery model, the modelling results implying the occurrence of non-negligible mechanical interactions between the phases in bulk. The dielectric properties characterized from room to high temperature (RT– HT, up to 600 °C) revealed: (i) noticeable effects of sintering schedule on dielectric constant (5–10) and dielectric loss factor (~0.02–0.04); (ii) stable dielectric properties until the failure of the electrode material. The thermomechanical properties coupled with desirable dielectric properties make the materials suitable for high density integrated circuitry or high temperature low-dielectric materials engineering.  相似文献   

6.
《Ceramics International》2016,42(7):8431-8437
This study aims to investigate the effect of sintering temperatures on the phase formation and physical characteristics of refractory cordierite prepared from rice husk silica, Al2O3, and MgO powders. The samples were subjected to sintering temperatures of 1050–1350 °C, and development of structures was characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD) coupled with Rietveld analysis, scanning electron microscopy (SEM) and dilatometry. The results obtained indicated the significant role of sintering temperatures on phase transformation of spinel and cristobalite into cordierite, in which at sintering temperatures of 1230–1350 °C the cordierite emerges as a dominant phase, while spinel and cristobalite are practically undetected. Formation of cordierite was followed by decrease in density, porosity, and thermal expansion coefficient, while for hardness and bending strength the opposite was true. Thermal expansion coefficient of the sintered sample at 1350 °C is 3.3×10−6/°C and the XRD analysis demonstrated that the main crystalline phase is cordierite. Based on these characteristics, the samples are considered as insulator, suggesting their potential use in refractory devices.  相似文献   

7.
In this work, Algerian kaolinite, a naturally occurring clay mineral, was used as low-cost precursor for the synthesis of cordierite ceramics. The kaolinite was mixed with synthetic magnesia, and the mixture was ball milled and reaction sintered in the temperature range 900–1350 °C for 2 h. Thermogravimetry (TG), differential thermal analysis (DTA), dilatometry, high temperature x-ray powder diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM) complementary techniques were used to analyze sintering behavior, characterize phase transformations, and investigate crystallization kinetics. Milling the kaolinite and magnesia mixture for 10 h yielded a homogenous powder, decreased the average particle size, and improved the roundness of particles. Different crystalline phases were present in the samples sintered in the temperature range 900–1150 °C, the cordierite phase started to crystallize at 1200 °C, and the formation of highly dense cordierite (99%) was complete at 1250 °C. The activation energy values for cordierite formation calculated using Kissinger, Boswell, and Ozawa methods were found to be equal to 577, 589, and 573 kJ/mol, respectively. The kinetic parameters n and m had values close to 2. Bulk nucleation with a constant number of nuclei was the dominant mechanism in cordierite crystallization, followed by two-dimensional growth controlled by interface reaction.  相似文献   

8.
《Ceramics International》2016,42(13):14469-14474
The effect of conventional sintering from 1300 to 1550 °C on the properties of 1 mol% ceria-doped scandia stabilized zirconia was investigated. In addition, the influence of rapid sintering via microwave technique at low temperature regimes of 1300 °C and 1350 °C for 15 min on the properties of this zirconia was evaluated. It was found that both sintering methods yielded highly dense samples with minimum relative density of 97.5%. Phase analysis by X-ray diffraction revealed the presences of only cubic phase in all sintered samples. All sintered pellets possessed high Vickers hardness (13–14.6 GPa) and fracture toughness (~3 MPam1/2). Microstructural examination by using the scanning electron microscope revealed that the grain size varied from 2.9 to 9.8 µm for the conventional-sintered samples. In comparison, the grain size of the microwave-sintered zirconia was maintained below 2 µm. Electrochemical Impedance Spectroscopy study showed that both the bulk and grain boundary resistivity of the zirconia decreases with increasing test temperature regardless of sintering methods. However, the grain boundary resistivity of the microwave-sintered samples was higher than the conventional-sintered ceramic at 600 °C and reduced significantly at 800 °C thus resulting in the enhancement of electrical conduction.  相似文献   

9.
In the present work, Al2O3–20 wt%Al2TiO5 composite was prepared from reaction sintering of alumina and titania nanopowders. The nano-sized raw powders were reconstituted into nanostructured particles by ball milling. Then, the nanostructured reconstituted powders were pressed and pressureless-sintered into bulk ceramics at 1300, 1400, 1500 °C for 2 h. The phase composition and microstructures of reconstituted powders and as-prepared ceramic composites were characterized by using X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope and energy-dispersive spectrometer (EDS). The microstructural analysis of the ceramic showed that the average grain size of the alumina–aluminium titanate composite increases with increasing the temperature. Also, SEM proved the existence of a proper interface between Al2TiO5 and Al2O3 grains and preferential distribution of aluminium titanate particles in the grain boundaries. XRD analysis indicated the absence of rutile titania in the sintered composite ensuring complete formation of aluminium titanate. The hardness of the samples sintered at 1300, 1400, 1500 °C were 4.8, 6.2 and 8.5 GPa, respectively.  相似文献   

10.
The formation of ceramic with the prevailing cordierite/mullite in the crystalline phase is greatly dependent on the raw materials used. In the present work the cordierite and mullite (or their solid—solutions accordingly with spinels and corundum) formation processes from compositions of natural raw materials (illite clay, dolomite) with synthetic additives (MgO, Al(OH)3, K2CO3) are studied. It is shown that the illite clay acts as a low viscosity liquid medium as well as a precursor for cordierite and mullite crystallisation in ceramics.The phase development using XRD—analysis and the SEM is studied. Particles size distribution of staiting powder and some properties of ceramic obtained are also demonstrated. It is shown that formation of the above mentioned phases starts at temperatures 1050–1080 °C and remarkably increases at 1200 °C for mullite and at 1300 °C for cordierite.  相似文献   

11.
《Ceramics International》2015,41(8):9745-9752
Porous silica ceramics were obtained at low forming pressure and low sintering temperature by using diatomaceous earth as a silica source and boric acid as an inexpensive additive. The starting raw material, diatomite from surface coal mine Kolubara, Serbia, was purified from organic and inorganic impurities by using heat and chemical treatment. Boric acid was used as binding and sintering aid up to 2 wt%. Powder was compacted by using different pressures of 40, 60 and 80 MPa. The pressed samples were sintered at 850, 1000, 1150, and 1300 °C for 4 h in air. A relatively high porosity in the range of 60–70% is obtained for the samples pressed at 40, 60 and 80 MPa and sintered at 1000 °C. Median pore size diameters are in the range of macroporous up to 2 μm in the samples sintered at 1150 and 1300 °C. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scaning electron microscopy (SEM) and mercury porosimetry measurements were employed to characterize the phases, functional groups, microstructure and pore size distribution of the obtained samples. In addition, measurements of densities and open porosities by immersion technique, according to Archimedes principle, were used. The relations between mechanical properties (Young modulus, Poisson ratio, and compressive strength) versus content of boric acid in the investigated samples were studied and disscussed.  相似文献   

12.
The aim of this work is to study the effect of phase composition and microstructure of cordierite-based co-clinkers on the electrical properties and coefficient of thermal expansion of cordierite briquettes. To achieve this aim talc and kaolinite samples were collected from quarries in the Egyptian desert. The samples are characterized using XRD, XRF, polarized light, cathodoluminescence and SEM microscopy attached with EDAX, in addition to X-ray micro-computed tomography (3D- µXCT). The electrical properties and coefficient of thermal expansion of the cordierite briquettes are determined using HiTESTER instrument and automatic Netzsch DIL402 PC dilatometer, respectively.Five talc-based batches were shaped and fired in the temperature range 1000–1350 °C for 2 h. The microstructural and physical characteristics of the resulted cordierite-based co-clinkers depend mainly on the viscosity of the liquid phase developed during firing. The microchemistry of the cordierite briquettes confirms their enrichment of both cordierite and ferroan-cordierite crystallized directly from locally developed melts. The dielectric constant and loss factor values for cordierite briquettes allow their possible use as insulator components in electronic applications.  相似文献   

13.
Si3N4–TiN composites were successfully fabricated via planetary ball milling of 70 mass% Si3N4 and 30 mass% Ti powders, followed by spark plasma sintering (SPS) at 1250–1350 °C. The sintering mechanism for SPS was a hybrid of dissolution–reprecipitation and viscous flow. The electrical resistivity decreased with increasing sintering temperature up to a minimum at 1250 °C and then increased with the increasing sintering temperature. The composites prepared by SPS at 1250–1350 °C could be easily machined by electrical discharge machining. Composite prepared by SPS at 1300 °C showed a high hardness (17.78 GPa) and a good machinability.  相似文献   

14.
Zirconium titanate (ZrTiO4) is a well known compound in the field of electroceramics, however, its potential for structural applications has never been analysed. Moreover, it is compatible with zirconia, thus, zirconium titanate–zirconia composites might have potential for structural applications in oxidizing atmospheres. Nevertheless, there are currently no data about elastic properties of zirconium titanate materials in the literature. In view of the importance of these properties for the structural integrity of components subjected to high temperature and mechanical strains, an attempt was done in this work to determine the elastic properties of ZrTiO4, both at room and high temperature. Young's modulus (161 ± 4 GPa), shear modulus (61 ± 1 GPa) and Poisson's ratio (0.32 ± 0.01) values at room temperature have been estimated for a fully dense single phase ZrTiO4 material from experimental data of sintered single phase ZrTiO4 materials with different porosities (6–19%). Values for room temperature Young's modulus are in agreement with those obtained by nanoindentation. Young's modulus up to 1400 °C shows an unusual dependence on temperature with no significant variation up to 500 °C an extremely low decrease from 500 to 1000 °C (≈0.02–0.03% every 100 °C) followed by a larger decrease that can be attributed to grain boundary sliding up to 1400 °C.  相似文献   

15.
《Ceramics International》2017,43(4):3647-3653
This study investigated the effect of sintering temperature on the microstructure and mechanical properties of dental zirconia-toughened alumina (ZTA) machinable ceramics. Six groups of gelcast ZTA ceramic samples sintered at temperatures between 1100 °C and 1450 °C were prepared. The microstructure was investigated by mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. The mechanical properties were characterized by flexural strength, fracture toughness, Vickers hardness, and machinability. Overall, with increasing temperature, the relative density, flexural strength, fracture toughness, and Vickers hardness values increased and more tetragonal ZrO2 transformed into monoclinic ZrO2; on the other hand, the porosity and pore size decreased. Significantly lower brittleness indexes were observed in groups sintered below 1300 °C, and the lowest values were observed at 1200 °C. The highest flexural strength and fracture toughness of ceramics reached 348.27 MPa and 5.23 MPa m1/2 when sintered at 1450 °C, respectively. By considering the various properties of gelcast ZTA that varied with the sintering temperature, the optimal temperature for excellent machinability was determined to be approximately 1200–1250 °C, and in this range, a low brittleness index and moderate strength of 0.74–1.19 µm−1/2 and 46.89–120.15 MPa, respectively, were realized.  相似文献   

16.
Porous materials produced from sintered Al(OH)3 show a potentially useful α-Al2O3-based coral-like co-continuous microstructure of high porosity (above 70%) and chemical resistance. However, due to the lack of efficient connections among the particles of the solid phase, their poor mechanical properties limit their use in biomechanical and thermo-mechanical applications, as scaffolds for bone tissue and hot air filters, respectively. In this study, authors improved these connections reinforcing the structure with a sintering aid (synthetic amorphous silica, SAS). Al(OH)3 particles (previously sintered at 1500 °C, 5 h) were imbibed with SAS particles, compacted and sintered at 1300 °C, which generated a coral-like mullite-based porous structure. The porosity levels of the material (47%) were similar to those of the initial green state (50%) and achieved high levels of mechanical properties (flexural strength of 50.29 MPa, elastic modulus of 26.00 GPa), with small linear thermal shrinkage (lower than 6% at 1500 °C).  相似文献   

17.
The possibility to obtain sintered material from alkaline basaltic tuffs is demonstrated. The parent rock was milled for 10–15 min, the resulting powder was pressed at 100 MPa and the obtained samples were heat-treated in the range of 1000–1140 °C. The sintering behaviour and the phase formation were studied by pycnometry, dilatometry, DTA, XRD and SEM.The final material was obtained by sintering at 1100 °C and is characterized by zero water absorption, 8–9 vol.% closed porosity and a structure similar to a glass-ceramic. Due to high crystallization trend of used composition, phase formation takes place during the sintering and cooling steps; this leads to a crystallinity of ~60% and formation of different crystal phases (pyroxene, anorthite, spinel and hematite).Despite the low-cost production cycle the obtained material is characterized by high mechanical properties: bending strength of 100 MPa and Young modulus of 90 GPa.  相似文献   

18.
Cubic boron nitride (cBN) compacts, using 15 wt.% Al and 20 wt.% AlN respectively as additives, were sintered in the temperature range of 1300–1700 °C for 20 min under high pressure of 5.0 GPa. The hardness, microstructure, phase composition and cutting performance of the high pressure sintered samples were investigated. A liquid phase sintering and reaction process was observed in the cBN–Al system, which leads to the formation of AlN and AlB2 as confirmed by X-ray diffraction (XRD) in the sintered compacts. Scanning electron microscopy (SEM) analysis shows that the samples have a homogeneous microstructure. The hardness decreases with increase of sintering temperature and reaches the highest Vickers hardness of 32.1 GPa at 1350 °C. While in the cBN–AlN system, AlN grains agglomerate heavily at temperature below ~ 1500 °C. As the sintering temperature increasing, Al2O3 appeared and the AlN agglomeration disappeared gradually. A highest cBN–AlN composite hardness of 29 GPa was achieved when sintered at 1600 °C. Turning tests showed that cBN compacts with 15 wt.% Al as the additive has a longer tool life as compared to that with 20 wt.% AlN. Our results indicated that cBN–Al system is more favourable to obtain well-sintered cBN compacts comparing with the cBN–AlN system.  相似文献   

19.
《Ceramics International》2016,42(5):6383-6390
Porous silica ceramics were obtained at low forming pressure (40–80 MPa) and low sintering temperature (850–1300 °C) for 4 h in air. Boric acid was used as a low-cost additive, in the amount of 2 wt%. Relatively high porosities of nearly 40% and 65% are obtained for the samples of clay and diatomite pressed at 40 MPa, and sintered at 1000 °C, respectively. The samples sintered at 1150 °C and 1300 °C have the average pore size diameters in the range of macroporous for clay 0.2–10 μm and for diatomite 0.2–5 μm. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and mercury porosimetry measurements were employed to characterize of the obtained samples. Measurements of densities and open porosities by immersion technique were used, according to the Archimedes principle. The relations between mechanical characteristics of the samples formed by using different pressures and sintered at different temperature, were discussed.  相似文献   

20.
Dense sintered esseneite–wollastonite–plagioclase glass–ceramics have been successfully prepared from a vitrified mixture of important inorganic waste (Bayer process red mud, fly ash from lignite combustion and residues from the polishing of porcelain stoneware tiles). The enhanced nucleation activity of fine glass powders, favoured by particular oxidation conditions, caused a substantial crystallisation, even in the case of very rapid thermal treatments at 900 °C, which led to remarkable mechanical properties (bending strength and Vickers micro-hardness exceeding 130 MPa and 7 GPa, respectively) and a promising chemical durability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号