首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Pressure-assisted infiltration was used to synthesize SiC/Al 6061 composites containing high weight percentages of SiC. A combination of PEG and glass water was used to fabricate SiC preforms and the effect of the presence of glass water on the microstructure and mechanical properties of the preforms was evaluated by performing compression tests on the preforms. Also, the compressive strength and the hardness of the SiC/Al composites were investigated. The results revealed that the glass water improved the compressive strength of the preforms by about five times. The microstructural characterization of the composites showed that the penetration of the aluminum melt into the preforms was completed and almost no porosity could be seen in the microstructures of the composites. Moreover, the composite containing 75 wt% SiC exhibited the highest compressive strength as well as the maximum hardness. The results of the wear tests showed that increasing the SiC content reduces the wear rate so that the Al-75 wt% SiC composite has a lower wear rate and a lower coefficient of friction than those of Al-67 wt% SiC composite. This indicated higher wear resistance in these composites than the Al alloy due to the formation of a tribological layer on the surface of the composites.  相似文献   

2.
《Ceramics International》2022,48(8):10941-10951
Aluminum alloys are well known light-weight alloys and very interesting materials to optimize the strength/weight ratio in order to reduce automotive vehicle weight, fuel consumption and CO2 emissions; unfortunately, they are also relatively soft and therefore cannot be used for high wear applications.The aim of this work was to develop an aluminum alloy brake disc with wear-resistant SiC particle reinforced aluminum matrix composites (SiC/Al) joined on to its surface.Different approaches based on brazing or shrink fitting joining technologies were used to join SiC/Al to the aluminum alloy surface.A functional graded structure was built by brazing thin layers of aluminum matrix composites reinforced with progressively higher amount of SiC particles by using a Zn–Al based alloy as joining material. Several samples were prepared by shrink fitting and brazing: 40 mm x 40 mm x 10 mm samples and a 100 mm diameter brake disc with 68% SiC particle reinforced Al matrix surface and aluminum alloy A365 body. Tribological tests demonstrated that an aluminum alloy brake disc with wear-resistant SiC particle reinforced aluminum matrix composites (SiC/Al) brazed on its surface is a promising technical opportunity.  相似文献   

3.
The relative high porosity of plasma spray ultra-high temperature ceramic (UHTC) coatings has been an important limiting factor for the ablation property and one of the reasons is the original pores of feedstocks. In this work, dense and spherical ZrC–SiC powders were fabricated by induction plasma spheroidization (IPS) and were used to prepare ZrC–SiC coating by vacuum plasma spray. The effect of microstructure of feedstock particles on the microstructure and ablation property of coating was studied. The results showed that the spherodized particles were composed of eutectic-like phase and ZrC granules, exhibiting high degree of compactness and sphericity, which had higher deposition rate and generated splats with flattened structure to overlap compactly then produce highly dense coating compared with those of spray drying (SD) particles. The deposition rate was doubled and the porosity of the coating was reduced by half. The ablation resistance of ZrC–SiC coating was greatly improved due to the formation of dense oxide scale.  相似文献   

4.
The effect of interfacial reactions between Al and SiC on the thermal conductivity of SiC-particle-dispersed Al-matrix composites was investigated by X-ray diffraction and transmission electron microscopy (TEM), and the thermal barrier conductance ( h c) of the interface in the Al–SiC composites was quantified using a rule of mixture regarding thermal conductivity. Al–SiC composites with a composition of Al (pure Al or Al–11 vol% Si alloy)–66.3 vol% SiC and a variety of SiC particle sizes were used as specimens. The addition of Si to an Al matrix increased the thermal barrier conductance although it decreased overall thermal conductivity. X-ray diffraction showed the formation of Al4C3 and Si as byproducts in addition to Al and SiC in some specimens. TEM observation indicated that whiskerlike products, possibly Al4C3, were formed at the interface between the SiC particles and the Al matrix. The thermal barrier conductance and the thermal conductivity of the Al–SiC composites decreased with increasing Al4C3 content. The role of Si addition to an Al matrix was concluded to be restraining an excessive progress of the interfacial reaction between Al and SiC.  相似文献   

5.
To improve the wear resistance of SiC coating on carbon/carbon (C/C) composites, SiC nanowires (SiCNWs) were introduced into the SiC wear resistant coating. The dense SiC nanowire-reinforced SiC coating (SiCNW-SiC coating) was prepared on C/C composites using a two-step method consisting of chemical vapor deposition and pack cementation. The incorporation of SiCNWs improved the fracture toughness of SiC coating, which is an advantage in wear resistance. Wear behavior of the as-prepared coatings was investigated at elevated temperatures. The results show that the wear resistance of SiCNW-SiC coating was improved significantly by introducing SiC nanowires. It is worth noting that the wear rate of SiCNW-SiC coating was an order of magnitude lower than that of the SiC coating without SiCNWs at 800 °C. The wear mechanisms of SiCNW-SiC coating at 800 °C were abrasive wear and delamination. Pullout and breakage of SiC grains resulted in failure of SiC coating without SiCNWs at 800 °C.  相似文献   

6.
The reaction route, microstructure, and properties of Ti3Si(Al)C2/SiC composites with 5–30 vol.% SiC content prepared by in situ hot pressing/solid–liquid reaction synthesis process are investigated. In contrast to monolithic Ti3Si(Al)C2, the SiC particle-reinforced composites exhibit higher elastic modulus, Vickers hardness, fracture toughness, improved wear, and oxidation resistance, but have a slight loss in flexural strength. The improvement in the properties is mainly ascribed to the contribution of SiC particles, and the strength degradation is due to the residual tensile stresses in the matrix.  相似文献   

7.
以SiC纳米纤维(SiCnf)为增强体,通过化学气相沉积在SiC纳米纤维表面沉积裂解碳(PyC)包覆层,并与SiC粉体、Al2O3-Y2O3烧结助剂共混制备陶瓷素坯,采用热压烧结工艺制备质量分数为10%的SiC纳米纤维增强SiC陶瓷基(SiCnf/SiC)复合材料。研究了PyC包覆层沉积时间对SiCnf/SiC陶瓷基复合材料的致密度、断裂面微观形貌和力学性能的影响。结果表明:在1 100 ℃下沉积60 min制备的PyC包覆层厚度为10 nm,且为结晶度较好的层状石墨结构;相比于纤维表面无包覆层的复合材料,复合材料的断裂韧性提高了35%,达到最大值(19.35±1.17) MPa·m1/2,抗弯强度为(375.5±8.5) MPa,致密度为96.68%。复合材料的断裂截面可见部分纳米纤维拔出现象,但SiCnf/SiC陶瓷基复合材料界面结合仍较强,纳米纤维拔出短,表现为脆性断裂。  相似文献   

8.
《Ceramics International》2017,43(18):16416-16423
Carbon/carbon (C/C) composites are widely used in structural components, particularly in the aerospace and aeronautics sectors. However, the application of C/C composites is limited by low oxidation resistance at high temperatures. In order to overcome this problem, graded SiO2/SiC coatings were deposited on C/C composites by a high-velocity solution plasma spray (HVSPS) process. Graded coatings were formed by reactions between the Si(OH)4 sprayed liquid precursor and the C/C substrate; these reactions were promoted by the high temperature of the plasma torch. The morphologies, microstructures, and chemical compositions of the coatings were investigated by X-ray diffraction, Raman spectroscopy, Fourier-transform infrared spectroscopy, and scanning electron microscopy/energy-dispersive X-ray spectroscopy. By altering the deposition time, the coating thickness was controlled, therefore demonstrating SiC formation and realizing graded SiO2/SiC coatings.  相似文献   

9.
Ceramic matrix composites of Al2O3-SiC-(Al, Si) have been fabricated by directed melt oxidation of aluminum alloys into SiC particulate preforms. The proportions of AI2O3, alloy, and porosity in the composite can be controlled by proper selection of SiC particle size and the processing temperature. The wear resistance of composites was evaluated in pin-on-disk experiments against a hard steel substrate. Minimum wear rate comparable to conventional ceramics such as ZTA is recorded for the composition containing the highest fraction of alloy, owing to the development of a thin and adherent tribofilm with a low coefficient of friction.  相似文献   

10.
《Ceramics International》2022,48(1):179-189
Combined stir casting and squeeze casting processes were used to fabricate Al5083 matrix composites reinforced with 20, 25, and 30 wt% SiCp. The microstructure, mechanical properties and wear behavior of the composites fabricated by combined stir casting and squeeze casting were compared with those fabricated by stir casting. The results revealed that the combined casting method improved the distribution of SiC particles through the reduction of the agglomeration of SiC particle and reduced the porosities of the samples from 2.32% to 1.29% in the sample containing 30 wt% SiC. These modifications led to the enhancement of mechanical properties i.e. increased the hardness to 85 BHN and the compressive strength to 350 MPa for the sample containing 30 wt% SiC fabricated by the combined casting method. In addition, the wear resistance of the samples fabricated by the combined casting method improved because of the reduced size of the wear debris as well as the smaller worn region. The dominant wear mechanism of all the composite samples fabricated by both methods was the delamination of the tribological layer while adhesion wear was dominant in the monolithic Al alloy.  相似文献   

11.
In high-speed modern industries, high-temperature stability of materials is essential. A promising high-temperature material currently attracting attention is silicon carbide (SiC)-based ceramic matrix composites (CMC). However, a disadvantage of these materials is their reduced lifetime in an oxidizing atmosphere. To overcome this, environmental barrier coating can be employed. In this study, we aimed to fabricate an environmental barrier coating using suspension plasma spray with Yb2Si2O7, which exhibits excellent oxidation resistance and a similar thermal expansion coefficient to SiC. To prepare the crystalline Yb2Si2O7 coating layer, the gas concentration of the plasma spray was adjusted, and then the suspension manufacturing solvent was adjusted and sprayed. The prepared coating samples were analyzed by X-ray diffraction, scanning electron microscope, transmission electron microscopes, and energy dispersive X-ray spectroscopy to determine phase and microstructure changes. Highly crystalline ytterbium disilicate was observed at low plasma enthalpy with no hydrogen and 20% addition of water.  相似文献   

12.
SiC whisker-reinforced polyetheretherketone (PEEK) composites with different filler proportions were made into block specimens by compression molding. The friction and wear properties of the composites were investigated on a block-on-ring machine by running a plain carbon steel (AISI 1045 steel) ring against the composite block under ambient conditions. The morphologies of the wear traces and wear debris were observed by scanning electron microscopy (SEM). It was found that SiC whisker-reinforced PEEK exhibited considerably lower friction coefficient compared with pure PEEK, while SiC whisker as a filler at a content of 1.25 to 2.5 wt % was very effective in reducing the wear rate of PEEK. Especially, the lowest wear rate was obtained with the composite containing 1.25 wt % SiC whisker. The SEM pictures of the wear traces indicated that PEEK composites undertook abrasive wear that was enhanced with increasing SiC whisker content, while for the frictional couple of carbon steel ring/composite block (reinforced with 1.25 wt % filler), a thin, uniform, and tenacious transfer film was formed on the ring surface. It was also supposed that the differences in the content of SiC whisker as filler could cause the differences in the wear mechanisms of SiC whisker-reinforced PEEK composites. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2341–2347, 1998  相似文献   

13.
Carbon fiber-reinforced silicon carbide matrix composites have the potential to overcome the shortcoming of the currently used carbon/carbon friction materials in aircraft brakes. In this article, the carbon/silicon carbide (C/SiC) composites were prepared by chemical vapor infiltration method, and the brake disks with different densities and component content were finally obtained. The friction coefficient and friction stability can be significantly improved by increasing both material density and carbon content. When the density of C/SiC composite is 2.3 g/cm3, the coefficient of friction measured is 0.23, the coefficient of friction stability remains about 0.43, the liner wear rate is less than 9.3 μm/cycle, and the weight wear rate is less than 9.1 μm/cycle. The rapid increase of friction coefficient approaching the end of braking is mainly related to the increasing of surface temperature in a short time and the enhanced adhesion and abrasion of contact conjunctions and asperities. The C/SiC composites exhibited a good stability of braking against fading versus the braking number and surface temperature. The surfaces of C/SiC brake disks were covered with wear debris including the fragment of carbon fibers after the braking tests. The wear on the surfaces is significantly determined by cyclic mechanical and thermal stresses, which result in the micro-cracks in the SiC matrix, the thin flakes of the surface materials as well as the grooves.  相似文献   

14.
Polymer matrix composites are a promising candidate in tribological applications due to possibility of tailoring their properties with special fillers. The comparative performance of Glass–Epoxy (G‐E) composites with influence of synthetic fillers such as graphite (Gr) and silicon carbide (SiC) and biobased natural filler jatropha oil cake (JOC) was experimentally investigated. All the composites were fabricated using vacuum‐assisted resin infusion (VARI) technique. The mechanical properties were studied in accordance with ASTM standards. The three‐body abrasive wear studies were carried out with rubber wheel abrasion tester as per ASTM‐G65 standard. Two different loads namely 22 N and 32 N with different abrading distances viz, 135, 270, 405, and 540 m are test parameters. The results reveal that addition of JOC in G‐E composites has significant influence on wear under varied abrading distance/load. Further, it was found that SiC filled G‐E composites exhibited better wear resistance compared to Gr/JOC filled G‐E composites. The operating wear mechanisms have been studied by using scanning electron microscopy. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
In this investigation, an attempt has been made to hardness and wear rate of Al7075 hybrid metal matrix composite reinforced with the hard ceramics like alumina (2, 4, and 6 wt.% of Al2O3) and silicon carbide (3, 6, and 9 wt.% of SiC) is fabricated by using stir casting method. The samples were aging at temperature of 140 °C, 160 °C and 180 °C and monitored by hardness test. Taguchi’s L27 Orthogonal array was used for optimizing the process parameters. The obtained results indicated that hardness increased with increasing reinforcement. A wear test was performed using pin-on disk apparatus at room temperature for constant load of 30N, at a fixed sliding speed of 1.66 m/s and wear resistance increased as the weight percentage of reinforcement increased. Scanning electron microscope (SEM) studies were carried out to evaluate the worn surface. From the analysis of variance (ANOVA), Al2O3 is the significant factor that affects the hardness and wear loss of hybrid composites followed by SiCp and heat treatment. Confirmatory test was performed for the optimized parameters and these results were within the acceptable range when compared with the experimental results.  相似文献   

16.
Two series of C/C–SiC composites were fabricated via precursor infiltration pyrolysis (PIP) and chemical vapor infiltration (CVI) using porous C/C composites with different original densities as preforms, respectively. The tribological characteristics of C/C–SiC braking composites were investigated by means of MM-1000 type of friction testing machine. The friction and wear behaviors of the two series of composites were compared and the factors that influence the friction and wear properties of C/C–SiC composites were discussed. Results show that the friction and wear properties relate close-knit to the content of SiC and porosity. As the original preform density increasing, the content of SiC and porosity decrease, and then the friction coefficient increases obviously, the braking time and the wear rate both decrease. Preparation techniques play an important role in the tribological properties of C/C–SiC composites. Compared with PIP process, the samples from CVI have a little higher friction coefficient, shorter braking time and higher wear rate.  相似文献   

17.
《Ceramics International》2023,49(3):4168-4176
Titanium matrix composites (TMCs) with ceramic particles exhibit higher hardness, strength, and wear resistance than those of titanium alloys. Wire arc additive manufacturing (WAAM) is a promising method for fabricating large TMC components owing to its high deposition rate and low production cost. In this study, a WAAM process using a flux-cored wire was developed to fabricate components of TiB plus TiC reinforced Ti6Al4V matrix composites. The network microstructure of the reinforcement was obtained through in-situ reactions induced by the B4C and C powders in the flux core. The formation mechanism of the network microstructure was discussed. The effect of the reinforcement fraction (5 and 10 wt%, hereinafter called 5 and 10 wt% samples) on the microstructure and wear resistance of the samples along the deposition direction were investigated. The results showed that the refined net-basket-dominated (α+β)-Ti matrix and stable network microstructure were formed in middle region owing to the introduction of the reinforcement. The microhardness increased by 23% and 35% when the reinforcement fractions were 5 and 10 wt%, respectively. The 10 wt% sample showed reduced wear performance because more cracks appeared as the result of the decreased ductility.  相似文献   

18.
SiC coating was deposited on carbon/carbon (C/C) composites by chemical vapor deposition (CVD). The effects of elevated temperatures on tribological performance of SiC coating were investigated. The related microstructure and wear mechanism were analyzed. The results show that the as-deposited SiC coating consists of uniformity of β-SiC phase. The mild abrasive and slight adhesive wear were the main wear mechanisms at room temperature, and the SiC coating presented the maximum friction coefficient and the minimum wear rate. Slight oxidation of debris was occurred when the temperature rose to 300?°C. As the temperature was above 600?°C, dense oxide film formed on the worn surface. The silica tribo-film replaced the mechanical fracture and dominated the frication process. However, the aggravation of oxidation at elevated temperatures was responsible for the decrease of friction coefficient and the deterioration of wear rate. The SiC coating presented the minimum friction coefficient and the maximum wear rate when the temperature was 800?°C.  相似文献   

19.
《Ceramics International》2021,47(19):26971-26977
The SiCf/SiC composites have been manufactured by a hybrid route combining chemical vapor infiltration (CVI) and precursor infiltration and pyrolysis (PIP) techniques. A relatively low deposition rate of CVI SiC matrix is favored ascribing to that its rapid deposition tends to cause a ‘surface sealing’ effect, which generates plenty of closed pores and severely damages the microstructural homogeneity of final composites. For a given fiber preform, there exists an optimized value of CVI SiC matrix to be introduced, at which the flexural strength of resultant composites reaches a peak value, which is almost twice of that for composites manufactured from the single PIP or CVI route. Further, this optimized CVI SiC amount is unveiled to be determined by a critical thickness t0, which relates to the average fiber distance in fiber preforms. While the deposited SiC thickness on fibers exceeds t0, closed pores will be generated, hence damaging the microstructural homogeneity of final composites. By applying an optimized CVI SiC deposition rate and amount, the prepared SiCf/SiC composites exhibit increased densities, reduced porosity, superior mechanical properties, increased microstructural homogeneity and thus reduced mechanical property deviations, suggesting a hybrid CVI and PIP route is a promising technique to manufacture SiCf/SiC composites for industrial applications.  相似文献   

20.
Silicon carbide Ceramic matrix composites (SiC matrix with SiC fibers, abbreviated as SiC/SiC composites) are widely used in aerospace and energy applications due to their excellent resistance to high temperatures, corrosion, wear, and low density. However, the difficult machinability and surface oxidation of SiC/SiC composites are the main factors restricting their further application. To address these issues, this paper explores a novel method for underwater femtosecond laser ablation of SiC/SiC composites to obtain high cleanliness, low-oxidation microporous surfaces. This paper systematically analyses the changes in hole depth, material removal rate (MRR), surface morphology, and material components during underwater femtosecond laser ablation of SiC/SiC composites, and explains the formation of typical features such as induced cones, small banded pits, fiber debonding and shedding. Our work provides new research ideas for understanding the removal mechanism and surface oxidation resistance of SiC/SiC composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号