首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The deformation of armchair single-walled carbon nanotube under transverse electric field has been investigated using density functional theory. The results show that the circular cross-sections of the nanotubes are deformed to elliptic ones, in which the tube diameter along the field direction is increased, whereas the diameter perpendicular to the field direction is reduced. The electronic structures of the deformed nanotubes were also studied. The ratio of the major diameter to the minor diameter of the elliptic cross-section was used to estimate the degree of the deformation. It is found that this ratio depends on the field strength and the tube diameter. However, the field direction has little role in the deformation.  相似文献   

2.
3.
Carbon nanotube–alumina (CNT–Al2O3) nanocomposites have been synthesized by direct growth of carbon nanotubes on alumina by chemical vapor deposition (CVD) and the as-grown nanocomposites were densified by spark plasma sintering (SPS). Surface morphology analysis shows that the CNTs and CNT bundles are very well distributed between the matrix grains creating a web of CNTs as a consequence of their in situ synthesis. Even after the SPS treatment, the CNTs in the composite material are still intact. Experimental result shows that the electrical conductivity of the composites increases with the CNT content and falls in the range of the conductivity of semiconductors. The nanocomposite with highest CNT content has electrical conductivity of 3336 S/m at near room temperature, which is about 13 orders of magnitude increase over that of pure alumina.  相似文献   

4.
A dry reforming (DR) catalyst based on bimetallic Pd–Pt supported on carbon nanotubes is presented. The catalyst was prepared using a microwave-induced synthesis. It showed enhanced DR activity in the 773–923?K temperature range at 3 atm. Observed carbon balances between the reactant and product gases imply minimal carbon deposition. A global three-reaction (reversible) kinetic model—consisting of DR, reverse water gas shift, and CH4 decomposition (MD)—adequately simulates the observed concentrations, product H2/CO ratios, and reactant conversions. Analysis shows that, under the conditions of this study, the DR and MD reactions are net forward and far from equilibrium, while the RWGS is near equilibrium.  相似文献   

5.
Bi-component fibers typically combine multiple functions that arise from at least two distinct components. As a result, these fibers can incorporate carbon nanotubes, which impart specific and controllable mechanical, electrical, and thermal transport properties to the fibers. Using gel spinning, sheath-core polyacrylonitrile–polyacrylonitrile/carbon nanotube bi-component fibers with a diameter of less than 20 μm and carbon nanotube concentrations of up to 10 wt% were produced. In these fibers, the carbon nanotubes were well dispersed and aligned along the fiber axis. The fibers exhibited a tensile strength as high as 700 MPa, and a tensile modulus as high as 20 GPa, as well as enhanced electrical and thermal conductivities when compared to the fibers without carbon nanotubes.  相似文献   

6.
Carbon nanotube (CNT) films are fabricated on indium tin oxide (ITO) glass substrates by combining electrophoresis with photolithography using ribonucleic acid (RNA)–CNT hybrids as functionalized CNTs and their emission properties are investigated. The CNTs are well-dispersed by wrapping them with RNA and well-defined RNA–CNT patterns are obtained on the ITO glass substrate. The RNA–CNT films show good field emission properties, such as high current densities, low turn-on fields, and uniform emission images. The RNA–CNT hybrids compare favorably to other functionalized CNTs for use in the electrophoretic deposition.  相似文献   

7.
Hyungu Im  Jooheon Kim 《Carbon》2012,50(15):5429-5440
Thermally conductive graphene oxide (GO)–multi-wall carbon nanotube (MWCNT)/epoxy composite materials were fabricated by epoxy wetting. The polar functionality on the GO surface allowed the permeation of the epoxy resin due to a secondary interaction between them, which allowed the fabrication of a composite containing a high concentration of this hybrid filler. The thermal transport properties of the composites were maximized at 50 wt.% of filler due to fixed pore volume fraction in filtrated GO cake. When the total amount of filler was fixed 50 wt.% while changing the amount of MWCNTs, a maximum thermal conductivity was obtained with the addition of about 0.36 wt.% of MWCNTs in the filler. Measured thermal conductivity was higher than the predicted value based on the by Maxwell–Garnett (M–G) approximation and decreased for MWCNT concentrations above 0.4%. The increased thermal conductivity was due to the formation of 3-D heat conduction paths by the addition of MWCNTs. Too high a MWCNT concentration led to increased phonon scattering, which in turn led to decreased thermal conductivity. The measured storage modulus was higher than that of the solvent mixed composite because of the insufficient interface between the large amount of filler and the epoxy.  相似文献   

8.
Novel nanocomposite porous scaffolds based on poly(?-caprolactone) (PCL) and multiwalled carbon nanotubes (MWCNTs) were manufactured by a compression-molding/polymer-leaching approach utilizing cryomilling for homogeneous dispersion of nanotubes and blending of polymers. Addition of MWCNTs to PCL and PCL/polyglycolide (PGA) blends resulted in significant changes to scaffold morphology compared to control samples despite persistent interconnected porosity. Several structures exhibiting rough and nanotextured surfaces were observed. Mean pore sizes were in the range of ~3–5?µm. The nanocomposites presented good mechanical and water uptake properties. The results of this research provide significant insight into a strategy for producing nanocomposite scaffolds with interconnected porosity.  相似文献   

9.
Graphene, whose structure consists of a single layer of sp2-hybridized carbon atoms, provides an excellent platform for designing composite nanomaterials. In this study, we have demonstrated a facile process to synthesize graphene–multiwalled carbon nanotube (MWCNT) composite. The graphene–MWCNT composite material is endowed with a large electrochemical surface area and fast electron transfer properties in Fe(CN)63?/4? redox species. A graphene–MWCNT composite modified electrode exhibits good performance in terms of the electrocatalytic reduction of H2O2; a sensor constructed from such an electrode shows a good linear dependence on H2O2 concentration in the range of 2 × 10?5 to 2.1 × 10?3 mol L?1. The detection limit is estimated to be 9.4 × 10?6 mol L?1. This study provides a new kind of composite modified electrode for electrochemical sensors.  相似文献   

10.
A series of carbon nanotube (CNT)-supported copper–cobalt–cerium catalysts were prepared and investigated for higher alcohols synthesis. The superior selectivity for the formation of ethanol and C2 + alcohols achieved using the CuCoCe/CNT(8) catalyst was 39.0% and 67.9%, respectively. The diameters of CNTs considerably influence the distribution of metal particles and the electronic interaction between the tube surface and the active species. The electronic effect between the encapsulated Co species and the inner surface is greatly improved in the narrowest CNT channel, which is expected to facilitate the reduction of cobaltous oxide and promote the alcohols yield remarkably (291.9 mg/gcath).  相似文献   

11.
Carbon nanotube–iron–mullite nanocomposite powders were prepared by a direct method involving a reduction in H2–CH4 and without any mechanical mixing step. The carbon nanotubes are mostly double- and few-walled (3–6 walls). Some carbon nanofibers are also observed. The materials were consolidated by spark plasma sintering. Their electrical conductivity is 2.4 S/cm whereas pure mullite is insulating. There is no increase in fracture strength, but the SENB toughness is twice than the one for unreinforced mullite (3.3 vs. 1.6 MPa m1/2). The mechanisms of carbon nanotube bundle pullout and large-scale crack-bridging have been evidenced.  相似文献   

12.
In this paper, we present a new synthesis method of carbon nanotubes (CNTs)-copper (Cu) composite on a silicon substrate using combination of supercritical fluid deposition (SCFD) and electrochemical plating (ECP) process. Deposition of a Cu layer onto CNTs is carried out under supercritical condition, and the CNTs–Cu composite with high-density Cu is synthesized by additional ECP process. The Cu layer deposited by SCFD functions as a seed layer for ECP, and spaces between neighboring CNTs are filled by Cu. The measured density of the CNTs–Cu composite is 8.2 ± 0.3 g/cm3, and the volume percentage of voids is 3–6%. The evaluated thermal resistance including the thermal interface resistance and bulk resistance of the composite is as low as 28.4 mm2 K W−1 at a contact pressure of 0.2 MPa. A CNT brush formed on the composite surface can reduce the thermal resistance to be 68.4 mm2 K W−1 at a contact pressure of 0.25 MPa. The CNTs–Cu composite shows the ability applicable to many microelectronics applications as a thermal interface material.  相似文献   

13.
The ferrocene–porphyrin–single-walled carbon nanotube (Fc–H2P–SWCNT) triad hybrid was prepared by amidation reaction between carboxylated SWCNT and aminoporphyrin bearing an appended ferrocenyl substituent. The hybrid described here was fully characterized by a combination of analytical techniques such as Fourier transform infrared spectroscopy, Raman, absorption and emission spectroscopy, atomic force and scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The steady emission characteristics revealed the existence of the effective photoinduced electron transfer among ferrocene, excited porphyrin moiety and SWCNT, which was further confirmed by the results of time-resolved transient absorption spectra. The final lifetime of charge-separation state was observed to be 62.9 μs in N,N-dimethylformamide, which was significant increased compared to the reference nanohybrid porphyrin–SWCNT and the reported ferrocene–porphyrin–fullerene triad. Therefore, Fc–H2P–SWCNT triad hybrid constructed by amidation is rationally expected to be an improved photon-to-electron conversion system.  相似文献   

14.
Graphene–carbon nanotube hybrid materials were successfully prepared through the ππ interaction without using any chemical reagent. We found that the ratio between carbon nanotube and graphene had critical influences on the state in aqueous solution and morphology of hybrid materials. Field emission scanning electron microscope and transmission electron microscope analysis confirmed that graphene nanosheets wrap around individual carbon nanotubes and form a homogeneous three-dimensional hybrid nanostructure. When applied as an anode material in lithium ion batteries, graphene–carbon nanotube hybrid materials demonstrated a high reversible lithium storage capacity, a high Coulombic efficiency and an excellent cyclability.  相似文献   

15.
Using a high-pressure air spray we developed a method to deposit electrically-conducting thin films consisting of non-covalently dispersed graphene and carbon nanotubes. The graphene–carbon nanotube film was immersed in a nitric acid and followed by exposure to fuming nitric acid. The acid treatment induced an increased concentration of atomic nitrogen on the graphene basal plane and carbon nanotube sidewall. This result indicates chemical p-type doping of the graphene oxide–carbon nanotube film. After the two acid treatments, the spray coated graphene oxide–carbon nanotube films on a glass substrate exhibit a low sheet resistance of 171 Ω/sq, and a high transmittance of 84% at a wavelength of 550 nm.  相似文献   

16.
《Ceramics International》2016,42(7):8165-8169
Dielectric composites fabricated by combining multi-walled carbon nanotubes (MWCNT) and PbTiO3 (PTO) powder were prepared using a sol–gel process. Well-dispersed PTO powder with various volume ratios of MWCNT was compressed to form a pellet, and then silver electrodes were coated on both sides for electrical measurements. The PTO–MWCNT composite with 0.4 vol% MWCNT showed the highest dielectric constant (912 at 1 kHz), which is approximately 25 times larger than that (37 at 1 kHz) of a pure PbTiO3 pellet. Furthermore, a strong frequency dependence of the dielectric constant in the low frequency range was shown for the PTO–MWCNT composites. Interfacial effects related to dielectric relaxation in composite materials were used to explain an observed increase of the dielectric constant near the percolation threshold.  相似文献   

17.
Multi-walled carbon nanotubes (MWCNTs), titanium(IV) isopropoxide (TIP) and potassium hexachloroplatinate(IV) (K2PtCl6) were used for the preparation of Pt/MWCNT/TiO2 composites. The composites were comprehensively characterized by Brauer–Emett–Teller surface area, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive X-ray and UV–vis absorption spectroscopy. The photoactivity of the prepared materials under UV irradiation was tested using the conversion of methylene blue (MB) in aqueous solution. According to the results of MB removal experiment, it can be considered that the MB removal effect of the Pt/MWCNT/TiO2 composites is affected by two kinds of effects: adsorption effect by MWCNTs and photocatalytic effect by TiO2. Finally, the photocatalytic effect increases due to photo-induced-electron absorption effect by MWCNTs and electron trap effect by Pt metal.  相似文献   

18.
Temperature and alkaline hydroxide treatment effects on the surface area and pore structure of the cathode deposit multi-walled carbon nanotube (MWCNT)–graphite mixture were investigated in a temperature range of 600–800 °C. Hydrogen sorption properties of the MWCNT–graphite mixture samples were studied by varying the alkaline hydroxide-activation temperature. Pore characterization of modified MWCNT–graphite mixture was performed with the observation of adsorption–desorption isotherms of N2 at 77 K. Hydrogen sorption of the non-treated and treated MWCNT–graphite mixture was carried out using a volumetric apparatus at 77 K. The highest surface area of the sample was obtained as 275 m2 g?1 by treatments with KOH at 600 °C. The increase in the specific surface area of MWCNT–graphite sample mixture was about 13 times. The maximum amount of hydrogen adsorbed on the MWCNT–graphite sample mixture was found as 0.75 and 0.54 wt.% by chemical treatments with KOH at 600 °C and NaOH at 700 °C, respectively whereas it was 0.01 wt.% for the original sample. The hydrogen sorption capacity was enhanced considerably by KOH treatments at 600 °C.  相似文献   

19.
The present work describes a simple shear mixing technique for developing a hydroxyapatite (HAp)–carbon nanotube (CNT) nanocomposite and the effect of reinforcement on the physical, mechanical, in vitro bioactivity and biological properties of HAp. XRD and FTIR confirmed that the main phase of the composites is HAp. HRTEM images demonstrated the formation of a two-dimensional nanocomposite structure, whereas FESEM images indicated the formation of nanosized HAp grains featuring sporadically distributed CNT molecules. No major phase changes in HAp were observed with up to 5% added CNT. However, adding more than 1% CNTs caused an increase in internal crystal strain and increased substitution of CO32− for OH and PO43− groups in pure HAp. The average crystallite size increased from ~46 nm to ~100 nm with only 0.5% added CNT, remained nearly unaffected up to 2% CNTs thereafter and suddenly decreased at 5% CNTs (~61 nm). The FESEM and HRTEM images clearly showed the attachment of MWCNT chains on HAp grains, which directly affected the samples' fracture toughness and flexural strength. Of the samples, 1% showed maximum values of K1C, whereas 5% showed maximum values of HV and three-point bending flexural strength. The in vitro bioactivity indicated increased apatite formation on the sample surface up to 1% CNTs after 24 weeks. However, adding 2% and 5% CNTs resulted in a manifold increase in apatite formation up to 12 weeks, after which dissolution increased up to 24 weeks, possibly due to increased substitution of CO32− for OH and PO43− groups. This result is confirmed by the FTIR studies. For all added CNT contents, all samples exhibited high haemocompatibility. However, there was a compromise between the observed mechanical properties and in vitro bioactivity studied up to 24 weeks, and care must be taken before selecting any final application of the nanocomposites.  相似文献   

20.
We report results from characterization studies focused on a diverse selection of catalyst support materials in order to understand what makes a good catalyst support during carbon nanotube (CNT) carpet growth via water-assisted chemical vapor deposition. The growth and catalyst morphological changes occurring for thin Fe layers deposited on Al2O3, MgO, TiN, and ZrO2 are compared. The growth behaviors of the catalyst substrates were evidently different, with Al2O3/Fe supporting CNT carpet growth and showing the highest activity and longest lifetime. The TiN/Fe catalyst also supported CNT carpet growth, albeit with much lower activity, shorter lifetime, and lower CNT quality while MgO/Fe and ZrO2/Fe did not support CNT carpet growth under standard growth conditions. Studies using a combination of atomic force microscopy and X-ray photoelectron spectroscopy revealed a general correlation between the catalyst behavior (activity and lifetime) and the 3D evolution of the catalyst for active catalysts (Al2O3/Fe and TiN/Fe). Analysis of inactive catalysts under standard conditions (MgO/Fe and ZrO2/Fe) raise interesting questions related to additional chemical interactions between the substrate and catalyst that could influence nucleation and CNT growth. This work provides a step toward understanding the challenges that arise in engineering efficient CNT growth processes on a desired substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号