共查询到20条相似文献,搜索用时 0 毫秒
1.
基于主分量分析的手写数字字符识别 总被引:16,自引:0,他引:16
针对手写数字字符识别中由于书写习惯和风格的不同,造成字符模式不稳定的问题,提出了一种图像预处理方法.首先采用数学形态学通过细化和膨胀,统一字符笔画的粗细,并使字符的局部特征得到改善;然后利用主分量分析法(PCA)抽取字符特征,估计字符的重建模型,并通过对重建模型的误差分析进行字符识别;最后通过对美国国家邮政局USPS字库中全部数字字符完整的识别实验,证实了算法的鲁棒性和准确性. 相似文献
2.
Improved Boosting Algorithms Using Confidence-rated Predictions 总被引:55,自引:0,他引:55
We describe several improvements to Freund and Schapire's AdaBoost boosting algorithm, particularly in a setting in which hypotheses may assign confidences to each of their predictions. We give a simplified analysis of AdaBoost in this setting, and we show how this analysis can be used to find improved parameter settings as well as a refined criterion for training weak hypotheses. We give a specific method for assigning confidences to the predictions of decision trees, a method closely related to one used by Quinlan. This method also suggests a technique for growing decision trees which turns out to be identical to one proposed by Kearns and Mansour. We focus next on how to apply the new boosting algorithms to multiclass classification problems, particularly to the multi-label case in which each example may belong to more than one class. We give two boosting methods for this problem, plus a third method based on output coding. One of these leads to a new method for handling the single-label case which is simpler but as effective as techniques suggested by Freund and Schapire. Finally, we give some experimental results comparing a few of the algorithms discussed in this paper. 相似文献
3.
王勇 《计算机与数字工程》2010,38(12)
在分析GA-BP算法不足的基础上,通过对GA算法中的相应算子进行改进设计,从而有效避免了GA算法中的出现局部次优的情况,并把GA算法产生的最优个体作为BP神经网络的连接权值和阈值,应用于手写体数字识别过程中.实验结果表明,改进的GA-BP算法可以提高BP网络的学习速度和识别效果. 相似文献
4.
基于改进模拟退火算法的手写体数字识别 总被引:1,自引:0,他引:1
对模糊C-均值聚类作了简要分析和评论,在此基础上将模拟退火机制引入其中,以克服模糊C-均值聚类的局部性和对初始聚类中心的敏感性;采用了基于贴近度和择近原则的模糊识别方法;详细设计了算法。仿真结果说明,该方法在识别速度和准确率方面都达到了令人满意的效果,为手写体数字的识别提供了一种新方法,也拓展了模糊理论的应用范围。 相似文献
5.
对模糊C-均值聚类作了简要分析和评论,在此基础上将模拟退火机制引入其中,以克服模糊C-均值聚类的局部性和对初始聚类中心的敏感性;采用了基于贴近度和择近原则的模糊识别方法;详细设计了算法。仿真结果说明,该方法在识别速度和准确率方面都达到了令人满意的效果,为手写体数字的识别提供了一种新方法,也拓展了模糊理论的应用范围。 相似文献
6.
应用图论和基元方向信息的手写数字识别 总被引:4,自引:0,他引:4
提出一种应用图论的原理和基元方向信息来识别手写数字的方法,根据图论的原理对数字的图像进行粗分类,抽取基元,由方向信息进行细分类,结果表明该方法有比较好的识别结果。 相似文献
7.
基于改进BP神经网络的手写体数字识别 总被引:1,自引:0,他引:1
数字识别在许多领域有广泛的应用。通过对人工神经网络的研究与学习,运用改进的BP神经网络对无约束手写体数字识别过程中的数字样本进行识别。实验证明,该方法具有很强的抗干扰性,克服了传统BP算法的局限性,其识别率和准确率都有很大提高。 相似文献
8.
基于SVM的手写数字相似字识别研究 总被引:2,自引:0,他引:2
该文针对银行票据识别系统中的手写数字的识别问题,利用神经网络和支撑向量机相结合的方法构建了手写数字的识别核,并利用支撑向量机对神经网络输出的识别结果中的相似字进行了二次识别,解决了手写数字中相似字的识别问题,最终的单字误识率达到2.0426%~5.4369%,满足了银行票据识别系统中的手写数字识别的实际要求。 相似文献
9.
10.
11.
12.
基于支撑向量机的支票手写体数字识别系统 总被引:2,自引:0,他引:2
该文提出了一种基于支撑向量机的支票手写体数字识别系统。支撑向量机方法,由于建立在结构风险最小化的基础上,而不仅仅使经验风险达到最小,从而突破了传统模式识别方法的局限,使得基于支撑向量机的分类器具有较好的推广能力。文中重点阐述了支撑向量机的基本原理和集成在该系统中的重要的处理模块,实验结果表明该系统具有较高的识别率和较强的实用性。 相似文献
13.
14.
Recently bagging, boosting and the random subspace method have become popular combining techniques for improving weak classifiers.
These techniques are designed for, and usually applied to, decision trees. In this paper, in contrast to a common opinion,
we demonstrate that they may also be useful in linear discriminant analysis. Simulation studies, carried out for several artificial
and real data sets, show that the performance of the combining techniques is strongly affected by the small sample size properties
of the base classifier: boosting is useful for large training sample sizes, while bagging and the random subspace method are
useful for critical training sample sizes. Finally, a table describing the possible usefulness of the combining techniques
for linear classifiers is presented.
Received: 03 November 2000, Received in revised form: 02 November 2001, Accepted: 13 December 2001 相似文献
15.
针对银行支票图像大写金额的无限制手写体汉字识别问题,进行了基于密度均衡原则的非线性规范化研究。提出了一种改进的非线性规范化方法.该方法定义的基于笔画间距和宽度的密度函数,不仅能较好地克服笔画变形的局部性、不规则性,而且能使同一字符内以及不同字符之间的笔画粗细趋于一致;同时,确定了图像中字符的有效区域,并据此改进了基于密度均衡原则的通用表达式,有效地解决了字符整体倾斜和单个笔画比较突出的问题,实验结果表明:该方法比其他同类方法效果更佳,可使银行支票图像的大写金额识别系统的识别正确率提高约1.5%。 相似文献
16.
17.
18.
基于改进型嵌入式隐马尔可夫模型的表情识别方法 总被引:1,自引:0,他引:1
提出一种基于改进型嵌入式隐马尔可夫模型的表情识别方法.首先通过视频人脸跟踪检验获取关键帧的感兴趣区域.然后利用二维离散余弦变换将人脸图像观测块转化为观测向量.最后实现嵌入式隐马尔可夫进行模型训练与表情识别.实验表明,采用嵌入式隐马尔可夫模型可有效识别表情,改进和优化后的设计方案识别效果良好. 相似文献
19.
基于流形学习与SVM的手写字符识别方法 总被引:1,自引:0,他引:1
本文结合核方法、局部线性嵌入(LLE)和支持向量机等机器学习方法,提出了一种集成手写字符维数约简、特征提取及识别方法.鉴于LLE方法对其近邻个数太过敏感,以及要求流形上的数据分布比较均匀,难以实现手写字符维数约简.本文提出的基于核局部线性嵌入方法(KLLE),能够选择最优的近邻个数、构造分布均匀流形,并克服了手写字符识别中由于书写习惯和风格不同造成字符模式不稳定的问题.使用MINST数据库中的手写数字进行仿真实验并利用PCA、LLE进行维数约简比较,验证了KLLE算法的有效性及优势. 相似文献
20.
Classification performance of an ensemble method can be deciphered by studying the bias and variance contribution to its classification error. Statistically, the bias and variance of a single classifier is controlled by the size of the training set and the complexity of the classifier. It has been both theoretically and empirically established that the classification performance (hence bias and variance) of a single classifier can be improved partially by using a suitable ensemble method of the classifier and resampling the original training set. In this paper, we have empirically examined the bias-variance decomposition of three different types of ensemble methods with different training sample sizes consisting of 10% to maximum 63% of the observations from the original training sample. First ensemble is bagging, second one is a boosting type ensemble named adaboost and the last one is a bagging type hybrid ensemble method, called bundling. All the ensembles are trained on training samples constructed with small subsampling ratios (SSR) 0.10, 0.20, 0.30, 0.40, 0.50 and bootstrapping. The experiments are all done on 20 UCI Machine Learning repository datasets and designed to find out the optimal training sample size (smaller than the original training sample) for each ensemble and then find out the optimal ensemble with smaller trianing sets with respect to the bias-variance performance. The bias-variance decomposition of bundling shows that this ensemble method with small subsamples has significantly lower bias and variance than subsampled and bootstrapped version of bagging and adaboost. 相似文献