首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
One of the important concepts of data envelopment analysis (DEA) is congestion. A decision making unit (DMU) has congestion if an increase (decrease) in one or more input(s) of the DMU leads to a decrease (increase) in one or more its output(s). The drawback of all existing congestion DEA approaches is that they are applicable only to technologies specified by non-negative data, whereas in the real world, it may exist negative data, too. Moreover, specifying the strongly and weakly most congested DMUs is a very important issue for decision makers, however, there is no study on specifying these DMUs in DEA. These two facts are motivations for creating this current study. Hence, in this research, we first introduce a DEA model to determine candidate DMUs for having congestion and then, a DEA approach is presented to detect congestion status of these DMUs. Likewise, we propose two integrated mixed integer programming (MIP)-DEA models to specify the strongly and weakly most congested DMUs. Note that the proposed approach permits the inputs and outputs that can take both negative and non-negative magnitudes. Also, a ranking DEA approach is introduced to rank the specified congested DMUs and identify the least congested DMU. Finally, a numerical example and an empirical application are presented to highlight the purpose of this research.  相似文献   

2.
Data envelopment analysis (DEA) is a mathematical approach for evaluating the efficiency of decision-making units (DMUs) that convert multiple inputs into multiple outputs. Traditional DEA models assume that all input and output data are known exactly. In many situations, however, some inputs and/or outputs take imprecise data. In this paper, we present optimistic and pessimistic perspectives for obtaining an efficiency evaluation for the DMU under consideration with imprecise data. Additionally, slacks-based measures of efficiency are used for direct assessment of efficiency in the presence of imprecise data with slack values. Finally, the geometric average of the two efficiency values is used to determine the DMU with the best performance. A ranking approach based on degree of preference is used for ranking the efficiency intervals of the DMUs. Two numerical examples are used to show the application of the proposed DEA approach.  相似文献   

3.
Data envelopment analysis (DEA) is a method for evaluating relative efficiencies of decision-making units (DMUs) which perform similar functions in a production system, consuming multiple inputs to produce multiple outputs. The conventional form of DEA evaluates performances of DMUs only from the optimistic point of view. In other words, it chooses the most favorable weights for each DMU. There is another approach that measures efficiency of a DMU from the pessimistic point of view. This approach chooses the most unfavorable weights for evaluation of each DMU. In this paper, we propose to integrate both efficiencies in the form of an interval in order to measure the overall performance of a DMU. The proposed DEA models for evaluation of efficiencies are called bounded DEA models. The proposed approach will be compared using a numerical example. Another example regarding performance evaluation of 50 bank branches in Iranian cities will be presented to demonstrate the advantages, simplicity, and utility of this approach in real-life situations.  相似文献   

4.
Data envelopment analysis (DEA) is a nonparametric programming method for evaluating the efficiency performance of decision making units (DMUs) with multiple inputs and outputs. The classic DEA model cannot provide accurate efficiency measurement and inefficiency sources of DMUs with complex internal structure. The network DEA approach opens the “black box” of DMU by taking its internal operations into consideration. The complexities of DMU's internal structure involve not only the organization of substages, but also the inputs allocation and the operational relations among the individual stages. This paper proposes a set of additive DEA models to evaluate and decompose the efficiency of a two‐stage system with shared inputs and operating in cooperative and Stackelberg game situations. Under the assumptions of cooperative and noncooperative gaming, the proposed models are able to highlight the effects of strategic elements on the efficiency formation of DMUs by calculating the optimal proportion of the shared inputs allocated to each stage. The case of information technology in the banking industry at the firm level, as discussed by Wang, is revisited using the developed DEA approach.  相似文献   

5.
Classic data envelopment analysis (DEA) models determine the efficiency of productive units, called decision making units (DMUs). DEA uses as its methodology the equiproportional reduction of inputs or increase of outputs and the finding of a single target for each DMU. This target does not incorporate the preference of the decision maker. Later works propose obtaining alternative targets based on nonradial projections on the efficiency frontier that are obtained through nonproportional variations of inputs or outputs. However, the efficiencies are not calculated for these alternative targets. This impedes a comparison among the DMUs. Thus, diverse nonradial efficiency indexes have been proposed based on mathematical averages or weighted averages that do not consider the vectorial characteristics of the efficiency. In this work, we present a nonradial efficiency index based on the initial concept of efficiency associated with each alternative (nonradial) target obtained through a multiobjective model of an inefficient DMU.  相似文献   

6.
In this paper, the cross efficiency evaluation method, regarded as a DEA extension tool, is firstly reviewed for its utilization in identifying the Decision Making Unit (DMU) with the best practice and ranking the DMUs by their respective cross-efficiency scores. However, we then point out that the main drawback of the method lies in non-uniqueness of cross-efficiency scores resulted from the presence of alternate optima in traditional DEA models, obviously making it become less effective. Aiming at the research gap, a weight-balanced DEA model is proposed to lessen large differences in weighted data (weighted inputs and weighted outputs) and to effectively reduce the number of zero weights for inputs and outputs. Finally, we use two examples of the literature to illustrate the performance of this approach and discuss some issues of interest regarding the choosing of weights in cross-efficiency evaluations.  相似文献   

7.
Relative efficiency of decision‐making units (DMUs) is assessed by classical data envelopment analysis (DEA) models. DEA is a popular technique for efficiency evaluation. There might be a couple of efficient DMUs. Classical DEA models cannot fully rank efficient DMUs. In this paper, a novel technique for fully ranking all DMUs based on changing reference set using a single virtual inefficient DMU is proposed. To this end, the first concept of virtual DMU is defined as average of all inefficient DMUs. Virtual DMU is a proxy of all inefficient DMUs. This new method proposes a new ranking method that takes into account impact of efficient DMUs on virtual DMU and impact of efficient DMUs on influences of other efficient DMUs. A case study is given to show applicability of the proposed approach.  相似文献   

8.
Data envelopment analysis (DEA) has been extended to handle random inputs and outputs by using chance constrained programming. In this paper, for DMUs with random inputs and outputs, we aim to measure a kind of relative efficiency, and achieve it from the optimistic viewpoint and the pessimistic viewpoint respectively. Considering the quantile of the distribution of the weighted output-input ratio of each DMU, we develop two stochastic DEA models to obtain the upper and lower bounds of the quantile efficiency under a constraint, and then achieve an interval efficiency evaluation. The best quantile efficiency and the worst quantile efficiency achieved by our models are closely similar to the CCR efficiency and belong to relative efficiencies. Further, the deterministic equivalents of our models are developed when the input and output vector of each DMU follows a multivariate joint normal distribution. Finally, three examples are presented to illustrate the performance of our approach.  相似文献   

9.
Data envelopment analysis (DEA), a performance evaluation method, measures the relative efficiency of a particular decision making unit (DMU) against a peer group. Most popular DEA models can be solved using standard linear programming (LP) techniques and therefore, in theory, are considered as computationally easy. However, in practice, the computational load cannot be neglected for large-scale—in terms of number of DMUs—problems. This study proposes an accelerating procedure that properly identifies a few “similar” critical DMUs to compute DMU efficiency scores in a given set. Simulation results demonstrate that the proposed procedure is suitable for solving large-scale BCC problems when the percentage of efficient DMUs is high. The computational benefits of this procedure are significant especially when the number of inputs and outputs is small, which are most widely reported in the literature and practices.  相似文献   

10.
Making optimal use of available resources has always been of interest to humankind, and different approaches have been used in an attempt to make maximum use of existing resources. Limitations of capital, manpower, energy, etc., have led managers to seek ways for optimally using such resources. In fact, being informed of the performance of the units under the supervision of a manager is the most important task with regard to making sensible decisions for managing them. Data envelopment analysis (DEA) suggests an appropriate method for evaluating the efficiency of homogeneous units with multiple inputs and multiple outputs. DEA models classify decision making units (DMUs) into efficient and inefficient ones. However, in most cases, managers and researchers are interested in ranking the units and selecting the best DMU. Various scientific models have been proposed by researchers for ranking DMUs. Each of these models has some weakness(es), which makes it difficult to select the appropriate ranking model. This paper presents a method for ranking efficient DMUs by the voting analytic hierarchy process (VAHP). The paper reviews some ranking models in DEA and discusses their strengths and weaknesses. Then, we provide the method for ranking efficient DMUs by VAHP. Finally we give an example to illustrate our approach and then the new method is employed to rank efficient units in a real world problem.  相似文献   

11.
The analytical hierarchical process/data envelopment analysis (AHP/DEA) methodology for ranking decision‐making units (DMUs) has some problems: it illogically compares two DMUs in a DEA model; it is not compatible with DEA ranking in the case of multiple inputs/multiple outputs; and it leads to weak discrimination in cases where the number of inputs and outputs is large. In this paper, we propose a new two‐stage AHP/DEA methodology for ranking DMUs that removes these problems. In the first stage, we create a pairwise comparison matrix different from AHP/DEA methodology; the second stage is the same as AHP/DEA methodology. Numerical examples are presented in the paper to illustrate the advantages of the new AHP/DEA methodology.  相似文献   

12.
Data envelopment analysis (DEA) is a linear programming based non-parametric technique for evaluating the relative efficiency of homogeneous decision making units (DMUs) on the basis of multiple inputs and multiple outputs. There exist radial and non-radial models in DEA. Radial models only deal with proportional changes of inputs/outputs and neglect the input/output slacks. On the other hand, non-radial models directly deal with the input/output slacks. The slack-based measure (SBM) model is a non-radial model in which the SBM efficiency can be decomposed into radial, scale and mix-efficiency. The mix-efficiency is a measure to estimate how well the set of inputs are used (or outputs are produced) together. The conventional mix-efficiency measure requires crisp data which may not always be available in real world applications. In real world problems, data may be imprecise or fuzzy. In this paper, we propose (i) a concept of fuzzy input mix-efficiency and evaluate the fuzzy input mix-efficiency using α – cut approach, (ii) a fuzzy correlation coefficient method using expected value approach which calculates the expected intervals and expected values of fuzzy correlation coefficients between fuzzy inputs and fuzzy outputs, and (iii) a new method for ranking the DMUs on the basis of fuzzy input mix-efficiency. The proposed approaches are then applied to the State Bank of Patiala in the Punjab state of India with districts as the DMUs.  相似文献   

13.
Data envelopment analysis (DEA) is an effective method for measuring the relative efficiency of a set of homogeneous decision‐making units (DMUs). Yu et al.’s study proposed an extended centralized DEA (CDEA) model that utilizes a two‐phase process for reallocating resources to project not only in each DMU (e.g., branch company) but also in the central DMU (e.g., headquarters, central authority) on the production frontier. However, evaluating the two‐phase model using the approach of Yu et al. may present some challenges because of inconsistent benchmarks. To solve this issue, we modified a single‐phase slack‐based CDEA that considers transfer‐in and transfer‐out slacks to facilitate the reallocation and adjustment of resources. Our modified single‐phase slack‐based CDEA is demonstrated with a numerical example illustrating input resource reallocation. Results show that the modified single‐phase CDEA model is effective to deal with a more realistic inconsistency reference set and provide much more reallocation ability than the two‐phase approach.  相似文献   

14.
In this paper, we propose a new methodology for ranking decision making units in data envelopment analysis (DEA). Our approach is a benchmarking method, seeks a common set of weights using a proposed linear programming model and is based on the TOPSIS approach in multiple attribute decision making (MADM). To this end, five artificial or dummy decision making units (DMUs) are defined, the ideal DMU (IDMU), the anti-ideal DMU (ADMU), the right ideal DMU (RIDMU), the left anti-ideal DMU (LADMU) and the average DMU (AVDMU). We form two comprehensive indexes for the AVDMU called the Left Relative Closeness (LRC) and the Right Relative Closeness (RRC) with respect to the RIDMU and LADMU. The LRC and RRC indexes will be used in the new proposed linear programming model to estimate the common set of weights, the new efficiency of DMUs and finally an overall ranking for all the DMUs. The change of the ratio between LRC and RRC indexes is capable to be provoked alternative rankings. One of the best advantages of this model is that we can make a rationale ranking which is demonstrated by the realized correlation analysis. Also, the new proposed efficiency score of the DMUs is close to the efficiency score of the DEA (CCR) methodology. Three numerical examples are provided to illustrate the applicability of the new approach and the effectiveness of the new approach in DEA ranking in comparison with other conventional ranking methods. Also, an "error" analysis proves the robustness of the proposed methodology.  相似文献   

15.
Data Envelopment Analysis (DEA) uses the best favorable weight set for the inputs and outputs of each decision‐making unit (DMU) to obtain its best possible score. Hence, this score can be considered as an upper bound of the real efficiency score. If we also use the least favorable weight set of each DMU, then a lower bound of the efficiency score can also be obtained. So, instead of one score, we can find an interval that gives all possible values of the efficiency score for each DMU. The aim of this paper is to propose an approach for determining efficiency intervals and setting up a full ranking of DMUs based on these intervals. We incorporate explicitly the decision‐maker's preferences in two phases. The first phase is for obtaining efficiency intervals, by introducing some restrictions on the input and output weights. The second one is for ranking the intervals based on the combination of the lower and the upper bounds of the efficiency intervals. The developed formulations will be illustrated through some numerical examples.  相似文献   

16.
This article examines the potential benefits of solving a stochastic DEA model over solving a deterministic DEA model. It demonstrates that wrong decisions could be made whenever a possible stochastic DEA problem is solved when the stochastic information is either unobserved or limited to a measure of central tendency. We propose two linear models: a semi-stochastic model where the inputs of the DMU of interest are treated as random while the inputs of the other DMUs are frozen at their expected values, and a stochastic model where the inputs of all of the DMUs are treated as random. These two models can be used with any empirical distribution in a Monte Carlo sampling approach. We also define the value of the stochastic efficiency (or semi-stochastic efficiency) and the expected value of the efficiency.  相似文献   

17.
The problem of ranking Decision Making Units (DMUs) in Data Envelopment Analysis (DEA) has been widely studied in the literature. Some of the proposed approaches use cooperative game theory as a tool to perform the ranking. In this paper, we use the Shapley value of two different cooperative games in which the players are the efficient DMUs and the characteristic function represents the increase in the discriminant power of DEA contributed by each efficient DMU. The idea is that if the efficient DMUs are not included in the modified reference sample then the efficiency score of some inefficient DMUs would be higher. The characteristic function represents, therefore, the change in the efficiency scores of the inefficient DMUs that occurs when a given coalition of efficient units is dropped from the sample. Alternatively, the characteristic function of the cooperative game can be defined as the change in the efficiency scores of the inefficient DMUs that occurs when a given coalition of efficient DMUs are the only efficient DMUs that are included in the sample. Since the two cooperative games proposed are dual games, their corresponding Shapley value coincide and thus lead to the same ranking. The more an efficient DMU impacts the shape of the efficient frontier, the higher the increase in the efficiency scores of the inefficient DMUs its removal brings about and, hence, the higher its contribution to the overall discriminant power of the method. The proposed approach is illustrated on a number of datasets from the literature and compared with existing methods.  相似文献   

18.
This paper adopts data envelopment analysis (DEA), a robust and reliable evaluation method widely applied in various fields to explore the key indicators contributing to the learning performance of English freshmen writing courses in a university of Taiwan from the academic year 2004 to 2006. The results of DEA model applied in learning performance change our original viewpoint and reveal that some decision-making units (DMUs) with higher actual values of inputs and outputs have lower efficiency because the relative efficiency of each DMU is measured by their distance to the efficiency frontier. DMUs may refer to different facet reference sets according to their actual values located in lower or higher ranges. In the managerial strategy of educational field, the paper can encourage inefficient DMUs to always compare themselves with efficient DMUs in their range and make improvement little by little. The results of DEA model can also give clear indicators and the percentage of which input and output items to improve. The paper also demonstrates that the benchmarking characteristics of the DEA model can automatically segment all the DMUs into different levels based on the indicators fed into the performance evaluation mechanism. The efficient DMUs on the frontier curve can be considered as the boundaries of the classification which are systematically defined by the DEA model according to the statistic distribution.  相似文献   

19.
Data envelopment analysis (DEA) is a widely used mathematical programming approach for evaluating the relative efficiency of decision making units (DMUs) in organizations. Crisp input and output data are fundamentally indispensable in traditional DEA evaluation process. However, the input and output data in real-world problems are often imprecise or ambiguous. In this study, we present a four-phase fuzzy DEA framework based on the theory of displaced ideal. Two hypothetical DMUs called the ideal and nadir DMUs are constructed and used as reference points to evaluate a set of information technology (IT) investment strategies based on their Euclidean distance from these reference points. The best relative efficiency of the fuzzy ideal DMU and the worst relative efficiency of the fuzzy nadir DMU are determined and combined to rank the DMUs. A numerical example is presented to demonstrate the applicability of the proposed framework and exhibit the efficacy of the procedures and algorithms.  相似文献   

20.
Data envelopment analysis (DEA) is a data-driven non-parametric approach for measuring the efficiency of a set of decision making units (DMUs) using multiple inputs to generate multiple outputs. Conventionally, DEA is used in ex post evaluation of actual performance, estimating an empirical best-practice frontier using minimal assumptions about the shape of the production space. However, DEA may also be used prospectively or normatively to allocate resources, costs and revenues in a given organization. Such approaches have theoretical foundations in economic theory and provide a consistent integration of the endowment-evaluation-incentive cycle in organizational management. The normative use, e.g. allocation of resources or target setting, in DEA can be based on different principles, ranging from maximization of the joint profit (score), combinations of individual scores or game-theoretical settings. In this paper, we propose an allocation mechanism that is based on a common dual weights approach. Compared to alternative approaches, our model can be interpreted as providing equal endogenous valuations of the inputs and outputs in the reference set. Given that a normative use implicitly assumes that there exists a centralized decision-maker in the organization evaluated, we claim that this approach assures a consistent and equitable internal allocation. Two numerical examples are presented to illustrate the applicability of the proposed method and to contrast it with earlier work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号