首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We prepared Bi6Fe2Ti3O18 thin films on Pt/Ti/SiO2/Si substrates with thickness ranging from ~300 to ~900 nm by using a chemical solution deposition route and investigated the thickness effects on the microstructure, dielectric, leakage, and ferroelectric properties of Bi6Fe2Ti3O18 thin films. Increasing thickness improves the surface morphology, dielectric, and leakage properties of Bi6Fe2Ti3O18 thin films and a well‐defined ferroelectric hysteresis loops can form for the thin films with the thickness above 400 nm. Moreover, the thickness dependence of saturation polarization is insignificant, whereas the remnant polarization decreases slightly with increasing thickness and it possesses a maximal value of ~20 μC/cm2 for the 500 nm‐thick thin films. The mechanisms of the thickness dependence of microstructure, dielectric, and ferroelectric properties are discussed in detail. The results will provide a guidance to optimize the ferroelectric properties in Bi6Fe2Ti3O18 thin films by chemical solution deposition, which is important to further explore single‐phase multiferroics in the n = 5 Aurivillius thin films.  相似文献   

2.
《Ceramics International》2022,48(4):5239-5245
Ta-doped Bi3.25La0.75Ti3O12(BLTT)/ZnO films were fabricated on Pt(111)/Ti/SiO2/Si substrates by a magnetron sputtering method. Firstly, ZnO crystal thin films were grown on the substrates by a reactive sputtering method. Then, BLTT thin films were deposited on the ZnO layers at room temperature and post-annealed at 600 °C. The micromorphology, ferroelectric and dielectric properties of BLTT/ZnO films were analyzed. The XRD analysis shows that ZnO buffer layer significantly reduces the crystallization temperature of BLTT thin film. The TEM results show that lamellar BLTT grains are grown on ZnO layer at a certain angle with few elements diffusion at the interface of ZnO phase and Bi4Ti3O12 phase. The ferroelectric properties indicate that BLTT/ZnO films exhibit different remanent polarization and coercive fields under electric field with different directions. The novel mechanism of tailoring ferroelectric properties may open new possibilities for designing special ferroelectric devices.  相似文献   

3.
《Ceramics International》2016,42(8):9577-9582
In the current study, a series of lanthanide ions, Tm, Yb and Lu, were used for doping at the Bi-site of the Aurivillius phase Na0.5Bi4.5Ti4O15 (NaBTi) to investigate the structural, electrical and ferroelectric properties of the thin films. In this regard, Na0.5Bi4.5Ti4O15 and the rare earth metal ion-doped Na0.5Bi4.0RE0.5i4O15 (RE=Tm, Yb and Lu, denoted by NaBTmTi, NaBYbTi, and NaBLuTi, respectively) thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. Formations of the Aurivillius phase orthorhombic structures for all the thin films were confirmed by X-ray diffraction and Raman spectroscopic studies. Based on the experimental results, the rare earth metal ion-doped Na0.5Bi4.0RE0.5Ti4O15 thin films exhibited a low leakage current and the improved ferroelectric properties. Among the thin films, the NaBLuTi thin film exhibited a low leakage current density of 6.96×10−7 A/cm2 at an applied electric field of 100 kV/cm and a large remnant polarization (2Pr) of 26.7 μC/cm2 at an applied electric field of 475 kV/cm.  相似文献   

4.
Bismuth titanate thin films are deposited on ITO/glass substrates by rf magnetron sputtering at room temperature using a Bi4Ti3O12 ceramic target. The deposited Bi4Ti3O12 films are annealed in a conventional furnace in ambient air for 10 min at temperatures ranging from 550 to 640 °C. One specimen is annealed in a crucible containing additional Bi2O3 compensation powder, while the other specimen is annealed in ambient air. XRD analysis shows that the crystal phases of films annealed with Bi2O3 powder are better than those of films annealed without Bi2O3 powder. Furthermore, the EDS results reveal that the bismuth weight percentage of the former is higher than that of the latter. SIMS analysis shows that the bismuth decreases near the surface of Bi4Ti3O12 film annealed without Bi2O3 powder, but reveals a stable distribution throughout the film annealed with Bi2O3 powder. These results imply that bismuth is readily evaporated during the thermal treatment process, particularly from the region near the film surface. Finally, the dielectric and polarization properties of the thin films annealed with Bi2O3 powder are found to be superior to those of the films annealed in ambient air.  相似文献   

5.
Effects of Ho and Ti ions individual doping and co‐doping on the structural, electrical, and ferroelectric properties of the BiFeO3 thin films are reported. Pure BiFeO3, (Bi0.9Ho0.1)FeO3, Bi(Fe0.98Ti0.02)O3+δ, and (Bi0.9Ho0.1)(Fe0.98Ti0.02)O3+δ thin films were prepared on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. All thin films were crystallized in distorted rhombohedral structure containing no secondary or impurity phases confirmed by using an X‐ray diffraction study. Changes in microstructural features, such as grain morphology and grain size distribution, for the doped samples were analyzed by a scanning electron microscopy. From the experimental results, a low electrical leakage (1.2 × 10?5 A/cm2 at 100 kV) and improved ferroelectric properties, such as a large remnant polarization (2Pr) of 52 μC/cm2 and a low coercive field (2Ec) of 886 kV/cm, were observed for the (Bi0.9Ho0.1)(Fe0.98Ti0.02)O3+δ thin film. Fast current relaxation and stabilization observed in the (Bi0.9Ho0.1)(Fe0.98Ti0.02)O3+δ imply effective reduction and neutralization of charged free carriers.  相似文献   

6.
Thin-films of La2Ti2O7 were obtained by dip-coating process using a precursor salt in nitric acid solution. The effects of solution concentration, withdrawal speed, post-annealing duration and temperature were investigated both on grain size and orientation of the La2Ti2O7 thin layers. In addition, a target with the required stoichiometry for PVD deposition of La-substituted Bi4Ti3O12 (BLT) was successfully sintered by spark plasma sintering (SPS) at 750 °C. Finally (0 1 1)-oriented BLT ferroelectric films have been grown by RF sputtering on (1 1 0)-oriented La2Ti2O7 polycrystalline thin-film. A preferential orientation of BLT thin films has been obtained after annealing at a temperature lower than 650 °C.  相似文献   

7.
Ho3+/Yb3+‐codoped Bi2Ti2O7 pyrochlore thin films were prepared by a chemical solution deposition method, and their visible up‐conversion (UC) photoluminescence and dielectric relaxation were studied. Ho and Yb can be doped into Bi2Ti2O7 lattice and single pyrochlore phase is maintained. Intense visible UC photoluminescence can be observed under the excitation of a 980‐nm diode laser. Two UC emission bands centered at 551 nm and 665 nm in the spectra can be assigned to 5F4, 5S25I8 and 5F55I8 transitions of Ho3+ ions, respectively. The dependence of their UC emission intensity on pumping power indicates that both the green and red emissions of the thin films are two‐photon process. In addition, a Stokes near‐infrared emission centered at 1200 nm can be detected, which is due to 5I65I8 transition of Ho3+ ions. The thin films prepared on indium tin oxide–coated glass substrates exhibit a relatively high dielectric constant and a low dielectric loss as well as a good bias voltage stability. The dielectric relaxation of the thin films was also analyzed based on the temperature‐ and frequency‐dependent dielectric properties. This study suggests that Ho3+/Yb3+‐codoped Bi2Ti2O7 thin films are promising materials for developing multifunctional optoelectronic thin film devices.  相似文献   

8.
This work examines the synthesis and characterization of crack‐free, β‐Bi2O3 thin films prepared on Pt/TiO2/SiO2/Si or corundum substrates using the sol‐gel method. We observed that the Bi‐based precursor has a pronounced influence on the β‐Bi2O3 phase formation. Well‐crystallized, single β‐Bi2O3 thin films were obtained from Bi‐2ethylhexanoate at a temperature of 400°C. In contrast, thin films deposited from Bi‐nitrate and Bi‐acetate resulted in non‐single Bi2O3 phase formation. TEOS was used for the stabilization of the β‐Bi2O3 phase. The phase composition of the thin films was characterized by means of X‐ray diffraction (XRD), whereas the morphology and thickness of the thin films were studied using scanning electron microscopy (SEM). The β‐Bi2O3 films' dielectric properties were characterized utilizing microwave‐frequency measurement techniques: (1) the split‐post dielectric resonator method (15 GHz) and (2) the planar capacitor configuration (1–5 GHz). The dielectric constant and dielectric loss measured at 15 GHz were 257 and 7.5 × 10?3, respectively.  相似文献   

9.
Ferroelectric Na0.5Bi4.5Ti4O15 (NaBTi) and donor Nb‐doped Na0.5Bi4.5Ti3.94Nb0.06O15 (NaBTiNb) thin films were prepared on Pt(111)/Ti/SiO2/Si(100) substrates using a chemical solution deposition method. The doping with Nb5+‐ions leads to tremendous improvements in the ferroelectric properties of the NaBTiNb thin film. Room‐temperature ferroelectricity with a large remnant polarization (2Pr) of 64.1 μC/cm2 and a low coercive field (2Ec) of 165 kV/cm at an applied electric field of 475 kV/cm was observed for the NaBTiNb thin film. The polarization fatigue study revealed that the NaBTiNb thin film exhibited good fatigue endurance compared with the NaBTi thin film. Furthermore, the NaBTiNb thin film showed a low leakage current density, which was 1.48 × 10?6 A/cm2 at an applied electric field of 100 kV/cm.  相似文献   

10.
We report on the structure, dielectric, ferroelectric, and photoluminescent properties of Sm3+-doped Bi4Ti3O12 thin films which were prepared on fused silica and Pt/Ti/SiO2/Si substrates by sol-gel method. The X-ray diffraction analysis confirmed that the Bi4-xSmxTi3O12 (BSmT) thin films were well crystallized in layered perovskite structure without any secondary phase. Raman spectra indicated that the structure of BSmT thin films was significantly distorted because of the Sm3+ doping. An appropriate doping amount of Sm3+ ions leads to obvious enhancement in ferroelectric and dielectric properties of BSmT thin films due to structure distortion and reduction in defects. In addition, the BSmT thin films also show orange-red color emission at 601?nm and long florescence lifetime (> 0.6?ms). This study indicated that lead-free BSmT thin films, which are featuring good electrical and photoluminescent properties, may have potential applications in integrated optoelectronic devices.  相似文献   

11.
Although the multi-phase coexistence makes Bi0.5Na0.5TiO3-based piezoelectric thin films possess stronger piezoelectric properties and more spacious application prospects in electronic devices, the domain reversal mechanism of Bi0.5Na0.5TiO3-based thin films cannot be accurately understood due to the size effect. In this study, the relationship between domain structure and piezoelectric properties of the (0.94-x)Bi0.5Na0.5TiO3-0.06BaTiO3-xBi(Fe0.95Mn0.03Ti0.02)O3 thin films are studied by using visualization technology PFM, structure and electrical properties characterizations. The results show that the addition of Bi(Fe0.95Mn0.03Ti0.02)O3 creates a long-range ordered/short-range disordered nanodomain coexisting structure. This kind of coexisting domain structure can realize the long-range reversal driven by disordered nanodomains under the external electric field, reduce the potential barrier and the hysteresis, and significantly enhance the piezoelectric properties of the thin films. Under the same conditions, the piezoelectric properties of the 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 thin films are enhanced nearly 2.3 times. This provides a reference for exploring the physical mechanism of high performance lead-free piezoelectric thin films.  相似文献   

12.
Ferroelectric intergrowth-structured Bi4Ti3O12-based thin films have been fabricated by chemical solution deposition. Bi4Ti3O12–SrBi4Ti4O15 (BiT–SBTi) and SrBi2Nb2O9–Bi4Ti3O12 (SBN–BiT) precursor films crystallized in the desired intergrown BiT–SBTi and SBN–BiT structures on Pt/TiOx/SiO2/Si substrates by optimizing the processing conditions. Synthesized BiT–SBTi and SBN–BiT thin films exhibited ferroelectric PE hysteresis loops. The BiT–SBTi thin films crystallized at 750 °C showed a 2Pr value approximately 20 μC/cm2. Although a little smaller Pr value was observed for the SBN–BiT thin films, the squareness of a PE hysteresis loop was superior to that of BiT–SBTi thin films. Also, the SBN–BiT thin films had a smoother surface morphology compared with BiT–SBTi thin films.  相似文献   

13.
《Ceramics International》2014,40(6):7947-7951
Lead free (1−x)(0.8Bi0.5Na0.5Ti0.5O3–0.2Bi0.5K0.5TiO3)–xBiZn0.5Ti0.5O3 (x=0–0.06) (BNT–BKT–BZT) thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by a sol–gel processing technique. The effects of BZT content on the structural, dielectric, ferroelectric and piezoelectric properties of the BNT–BKT–BZT thin films were investigated systematically. The BNT–BKT–BZT thin films undergo a transition from ferroelectric to relaxor phase with increasing temperature. The phase transition temperature decreases with the increase of BZT content. The BNT–BKT–BZT thin film with x=0.04 exhibits the best ferroelectric properties (Pmax=40 µC/cm2 and Pr=10 µC/cm2), largest dielectric constant (ε=560) and piezoelectric constant (d33=40 pm/V). This finding demonstrates that the BNT–BKT–BZT thin film has an excellent potential for demanding high piezoelectric properties in lead free films.  相似文献   

14.
The color‐tunable up‐conversion (UC) emission and infrared photoluminescence and dielectric relaxation of Er3+/Yb3+ co‐doped Bi2Ti2O7 pyrochlore thin films prepared by a chemical solution deposition method have been investigated. The pyrochlore phase structure of Bi2Ti2O7 can be stabilized by Er3+/Yb3+ co‐doping. Intense color‐tunable UC emission and infrared photoluminescence can be detected on the thin films excited by a 980 nm diode laser. Two UC emission bands centered at 548 and 660 nm in the spectra can be assigned to 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+ ions, respectively. A Stokes infrared emission centered at 1530 nm is due to 4I13/24I15/2 transition of Er3+ ions. The dependence of UC emission intensity on pumping power indicates that the UC emission of the thin films is a two‐photon process. The thin films also exhibit a relatively high dielectric constant and a low dissipation factor as well as a good bias voltage stability. Temperature‐ and frequency‐dependent dielectric relaxation has been confirmed. This study suggests that Er3+/Yb3+ co‐doped Bi2Ti2O7 thin films can be applied to new multifunctional photoluminescence dielectric thin‐film devices.  相似文献   

15.
The microwave dielectric properties of Sm(Mg0.5Ti0.5)O3 incorporated with various amount of Bi2O3 and B2O3 additives have been investigated systematically. In this study, both Bi2O3 and B2O3 additives acting as a sintering aid can effectively lower the sintering temperature from 1550 °C to 1300 °C. The ionic radius of Bi3+ for a coordination number of 6 is 0.103 nm, whereas the ionic radius of B3+ is 0.027 nm. Clearly, the ionic radius of Bi3+ is greatly larger than one of B3+, which resulted in the specimens incorporated with Bi2O3 having larger lattice parameters and cell volume than those incorporated with B2O3. The experimental results show that no second phase was observed throughout the entire experiments. Depending on the interfacial tension, the liquid phase may penetrate the grain boundaries completely, in which case the grains will be separated from one another by a thin layer as shown in Sm(Mg0.5Ti0.5)O3 ceramics incorporated with Bi2O3. Whereas, in Sm(Mg0.5Ti0.5)O3 ceramics incorporated with B2O3, the volume fraction of liquid is high, the grains may dissolve into the liquid phase, and rapidly rearrange, in which case contact points between agglomerates will be dissolved due to their higher solubility in the liquid, leading plate-like shape microstructure.A dielectric constant (?r) of 29.3, a high Q × f value of 26,335 GHz (at 8.84 GHz), and a τf of −32.5 ppm/°C can be obtained for Sm(Mg0.5Ti0.5)O3 ceramics incorporated with 10 mol% Bi2O3 sintered at 1300 °C. While Sm(Mg0.5Ti0.5)O3 ceramics incorporated with 5 mol% B2O3 can effectively lower temperature coefficient of resonant frequency, which value is −21.6 ppm/°C. The Sm(Mg0.5Ti0.5)O3 ceramic incorporated with heavily Bi2O3 and B2O3 additives exhibits a substantial reduction in temperature (∼250 °C) and compatible dielectric properties in comparison with that of an un-doped one. This implied that this ceramic is suitable for miniaturization in the application of dielectric resonators and filters by being appropriately incorporated with a sintering aid.  相似文献   

16.
Pure BiFeO3 and rare earth and transition metal ions co-doped (Bi0.9Dy0.1)(Fe0.975TM0.025)O3±δ (TM=Ni2+, Cr3+ and Ti4+) thin films were prepared on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. The changes in the microstructure and the electrical properties with doping elements were investigated. The thin films were well crystallized and randomly oriented, with no detectable impurity and secondary phases. The leakage current densities were reduced and the ferroelectric properties were improved in the co-doped thin films. Among the thin films, the (Bi0.9Dy0.1)(Fe0.975Cr0.025)O3 thin film exhibited well saturated hysteresis loops with remnant polarization (2Pr) of 36 μC/cm2 and coercive electric field (2Ec) of 954 kV/cm at 1000 kV/cm and low leakage current density of 1.91×10−5 A/cm2 at 100 kV/cm. The enhanced properties observed in the co-doped thin films could be considered as being the result of the suppression of oxygen vacancies and of the modified microstructure.  相似文献   

17.
《Ceramics International》2022,48(17):24943-24952
In order to effectively reduce the high recombination rate of photogenerated carriers when Bi12TiO20 (BTO) was excited by visible light, Ti3C2Tx/BTO/fluorine-doped tin oxide photoanodes were conveniently prepared with the aid of mechanical coating by gentle ultrasonic mixing. Systematic characterization and the degradation of methylene blue in a photoelectrochemical cell were performed. The results showed that the Ti3C2Tx/BTO composite exhibited a strong light absorption ability and the effective separation of photogenerated carriers. The optimal anode (6 wt% Ti3C2Tx/BTO) degraded 85.4% of methylene blue within 120 min at an applied electric field of 1 V, with a reaction rate that was 3.5 times that of BTO. It was proved that Ti3C2Tx, as a useful co-catalyst, creates an internal electric field at the contact interface with BTO and an external electric field, which are responsible for the enhanced photoelectrocatalytic degradation capacity of the composite anode materials.  相似文献   

18.
The dielectric properties of Bi2Ti2O7 were explored as a function of temperature and frequency. A comparison between the dielectric response of the well‐known Bi1.5Zn0.92Nb1.5O6.92 (BZN) pyrochlore and the recently available Bi2Ti2O7 sintered ceramic revealed considerable differences, which indicate that chemical disorder, and not atomic displacement on its own, is chiefly responsible for the dielectric relaxation in bismuth pyrochlores. A low‐frequency (<10 kHz) and relatively high‐temperature (~125 K) dielectric relaxation was observed in Bi2Ti2O7. An Arrhenius function was used to model the relaxation behavior and yielded an activation energy of 0.162 eV and an attempt jump frequency of ~1 MHz. This response is consistent with space charge polarization and not the result of dipolar or ionic disorder.  相似文献   

19.
《Ceramics International》2023,49(12):20200-20209
A variety of lanthanide ions doped bismuth titanate (Bi4Ti3O12) luminescent materials with eminent down-conversion (DC) and up-conversion (UC) luminescence performance have been fabricated via a facile sol-gel approach. The XRD, XPS, and EDX elemental mapping results confirm the phase structure of orthorhombic Bi4Ti3O12 (BTO), and the lanthanide activator ions occupy the Bi3+ lattice sites in the BTO crystal. Under UV or NIR excitation, the Eu3+, Yb3+/Ln3+ (Ln = Er, Tm, and Ho) doped Bi4Ti3O12 samples exhibit characteristic red, green, blue, and green emissions. The luminescent mechanisms of the BTO:Eu3+ and BTO:Yb3+/Ln3+ samples are discussed based on the energy level diagrams. The doping concentrations of Eu3+, Yb3+, Er3+, Tm3+, Ho3+ ions and annealing temperature and time are optimized, whose optimal values are determined to be 14, 8, 1, 0.4, 1 mol% and 800 oC, 4 h. The as-obtained LED devices fabricated by Bi4Ti3O12:Eu3+ and Yb3+/Ln3+ phosphors exhibit dazzling multicolor visible light emissions from different Ln3+ ions. The results indicate that the as-obtained Ln3+ doped BTO phosphors may be potentially utilized in LED devices and solid-state lighting. Furthermore, the Eu3+ and Er3+ co-doped BTO samples exhibit different DC and UC luminescence spectral profiles when excited at various UV, visible, or NIR wavelengths, revealing their eminent feasibility and great potential in anti-counterfeiting applications.  相似文献   

20.
Ferroelectric CaBi4Ti4O15 (CBT) thin films were prepared by spin coating technology using solution-based fabrication. The as-deposited CBT thin films were crystallized below 600 °C and the layered perovskite were crystallized at 700 °C using CFA processing in air. The enhancement of ferroelectric properties in CBT thin films for MFIS structures were investigated and discussed. Compared the Bi4Ti3O12 (BIT), the CBT showed the better physical and electrical characteristics. The 700 °C annealed CBT thin films on SiO2/Si substrate showed random orientation and exhibited large memory window curves. The maximum capacitance, memory window and leakage current density were about 250 pF, 2 V, and 10?5 A/cm2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号