首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2017,43(15):12196-12204
This article describes the morphological, structural, and luminescent properties of Y2O3:Eu3+ aerogels and Y(OH)3/Y2O3:Eu3+@SiO2 glassy aerogels synthesized by the sol-gel method with Eu concentrations from 2.5 mol% to 30 mol%. XRD measurements indicated that both the aerogels and glassy aerogels had a monoclinic phase, but the crystallinity in the glassy aerogels was lower due to the presence of SiO2. SEM images reveal that a three-dimensional porous network was formed in the aerogels due to the interconnection of coalesced Y2O3:Eu3+ nanoparticles. The 3D porous network was also observed in the glassy aerogels, coated with a silica shell. In both the aerogels and glassy aerogels, the size of the agglomerates decreased as the europium concentration increased. This, in turn, increased the average size of the macropores that formed their 3D network. Furthermore, the luminescent properties of the aerogels and glassy aerogels were studied under UV excitation, and it was observed that their red emission intensity increased continuously as the Eu3+ concentration increased. The luminescence of the aerogels was on average 50% higher than that of the glassy aerogels. Hence, our results indicate that porous and luminescent aerogels with and without silica are adequate for applications in sensing and catalysis.  相似文献   

2.
《Ceramics International》2016,42(7):8102-8107
Y2O3:Eu3+ thin films were grown on quartz fabric substrate by electron beam evaporation (EBE) at different deposition temperatures. It was found that an increase of deposition temperature from room temperature (R.T.) to 250 °C results in improved morphologies of the films, such as reduced defects, spherical particle shape and dense surface topography. A change in the predominant orientation of Y2O3:Eu3+ thin films was detected from (222) at low temperatures of R.T.–150 °C to (400) at higher temperatures of 200–250 °C. The luminescent intensity of the films was gradually improved with an increase in deposition temperature and the optimal brightness was observed when the films were grown at 250 °C and improved by 32.67% in comparison with that of the films grown at R.T. The results reveal that the improved morphologies and effective crystallization can contribute to the enhanced luminescent properties of the Y2O3:Eu3+ thin films.  相似文献   

3.
《Ceramics International》2017,43(5):4599-4605
We synthesized the trivalent europium ions (Eu3+) doped lanthanum aluminate (LaAlO3, LAO) nanophosphors by a solvothermal method. Their structural, morphological, and luminescent properties were systematically investigated. The obtained nanoparticles possessed single nanocrystallinity with a rhombohedral structure. For the excitation originating from the charge transfer band (O2- to Eu3+ ions) under 320 nm illumination, the featured emissions of Eu3+ ions were detected in all the compounds. The optimum doping concentration of Eu3+ ions in LAO was about 9 mol% and the concentration quenching was dominated by dipole-dipole interaction. Furthermore, the Judd-Ofelt (J-O) theory was used to estimate the J-O intensity parameters. Based on the temperature-dependent PL emission spectra, the thermal stability was analyzed and the activation energy was obtained to be 0.234 eV. Meanwhile, the decay time, color coordinate/purity, and cathodoluminescence behaviors of the synthesized nanophosphors were also studied. These characteristics make the Eu3+-doped LAO nanoparticles a promising red-emitting phosphor for both ultraviolet-based white light-emitting diodes and field-emission displays.  相似文献   

4.
A red long-lasting phosphorescent material, monodisperse Y2O2S: Eu3+, Mg2+, Ti4+ nanospheres have been prepared successfully. Y(OH)(CO3): Eu3+ nanospheres were firstly synthesized via an urea-based homogeneous precipitation technique to serve as the precursor. Nanospheres long-lasting phosphors Y2O2S: Eu3+, Mg2+, Ti4+ were obtained by calcinating the precursor in CS2 atmosphere. XRD investigation shows a pure phase of Y2O2S, indicating no other impurity phase appeared. SEM observation reveals that the structures are nanosphere. The Y2O2S: Eu3+, Mg2+, Ti4+ nanospheres with particle size about 100–150 nm show uniform size and well-dispersed distribution. After irradiation by ultraviolet radiation with 325 nm for 5 min, the phosphor emitted red color long-lasting phosphorescence corresponding to typical emission of Eu3+ ion. The main emission peaks are ascribed to Eu3+ ions transition from 5DJ (J = 0, 1, 2) to 7FJ (J = 0, 1, 2, 3, 4). Both the PL spectra and luminance decay revealed that this phosphor had efficient luminescent and long-lasting properties. It was considered that the red-emitting long-lasting phosphorescence was due to the persistent energy transfer from the traps to the Ti4+ and Mg2+ ions.  相似文献   

5.
《Ceramics International》2015,41(7):8481-8487
In this work Sm3+ (0–2.0 at%) and Bi3+ (0–2.0 at%) doped Y2O3 luminescent powders were prepared by a sol–gel method from yttrium acetylacetonate, samarium and bismuth nitrates as metal sources. The as prepared powders (chemical composition is close to stoichiometric Y2O3) present the cubic structure from 700 °C, and at 900 °C are characterized by the presence of rounded particles with heterogeneous size of 42.9 nm. Luminescent effect of ions of Sm3+ and Bi3+ into Y2O3 host as was studied on heat treated powders from 800 to 1100 °C. The combination of the red luminescence from the Sm3+ ions and the bluish from Bi3+, makes the synthesized phosphors candidates to be used in fabrication of phosphor-converted light-emitting diodes (LEDs).  相似文献   

6.
《Ceramics International》2017,43(13):9838-9845
The structural and luminescent properties of Eu3+ doped TiO2 nanophosphors synthesized by low cost combustion method were investigated. The X-ray diffraction analysis revealed that crystallite size decreases with doping concentration. Lattice volume expansion occurred due to the substitution of Ti4+ ions by larger ionic radii ions Eu3+. FESEM images showed prepared phosphors to be nano size spherical shaped particles. Energy band gap of 3 mol% Eu3+ doped samples decreased to 3.15 eV due to doping effect. The Eu3+ doped TiO2 nanophosphors exhibited main red emission peak centered at 616 nm under 395 nm UV light excitation. Concentration quenching was observed at 3 mol% doping, that has been ascribed to dipole-dipole interaction. The covalent nature of Eu-O bond and environment around Eu3+ ions were discussed using Judd-Ofelt (J-O) intensity parameters. Internal quantum efficiency was calculated using excited state lifetime 5D0 state of Eu3+ ion and J-O theory. The CIE colour coordinates and colour purity were calculated using the spectral energy distribution function. Low excited state life time indicated that Eu3+ doped TiO2 can be used as red emitting phosphor for white light emitting diode applications.  相似文献   

7.
The Bi4Ti3O12 (BIT) is a well known ferroelectric ceramic within the family of so called Aurivillius phases. The present work shows that when bismuth (Bi3+, r = 0.96 Å) is substituted by trivalent europium (r = 0.95 Å), a solid solution, Bi4−xEuxTi3O12 (BIET), is formed. This solid solution was obtained by coprecipitation and characterized by X-ray diffraction, electron microscopy and density measurements. The solubility limit x was determined, and the variation of the lattice parameters was measured through profile fitting of the whole pattern. In order to establish the europium substitution site, we studied the luminescent properties of the material. The excitation spectra, at room temperature, show a broad band associated with a charge transfer state and with the intrinsic absorption of Bi3+. We found at least two Eu3+ sites, selectively excited. The Eu3+ emission spectra reveal a significant rising of the point symmetry at the rare earth site with respect to the Bi C1, deduced from the crystallographic analysis.  相似文献   

8.
A series of Eu3+-doped C12H18Ca3O18 phosphors were synthesized through a facile hydrothermal method and the properties of as-prepared phosphors were explored by X-ray diffractometer (XRD), scanning electron microscope (SEM), and photoluminescence (PL) spectrometer. The exploration results indicated that the C12H18Ca3O18:Eu3+ had been successfully synthesized. The morphology of C12H18Ca3O18:Eu3+ was a strip with the size of 100–4000 nm × 50–400 nm × 50–200 nm and the ratio of length to width of 2–80. The strongest emission peak of C12H18Ca3O18:Eu3+ around 620 nm was ascribed to 5Do7F2 transition of Eu3+, and the peaks centered at 590, 653 and 694 nm respectively corresponded to 5Do7F1, 7F3, and 7F4 transitions. C12H18Ca3O18: Eu3+ gave the red light emission, as indicated by color coordinate analysis. The photoluminescence intensity of the phosphors prepared under the Eu3+ concentration of 6% was the highest. The crystal structure of C12H18Ca3O18:Eu3+ was changed after europium ions occupied the lattice position of calcium ions. Europium ion could displace calcium arbitrarily. As a new kind of matrix, calcium citrate possesses the properties of both organic and inorganic compounds and the luminescent C12H18Ca3O18: x Eu3+ particles may be applied in biological fluorescent tags and luminescent materials.  相似文献   

9.
A novel approach of neodymium ion doped yttrium oxide (Nd:Y2O3) amorphous precursor compaction and sintering is being reported for the first time. Precursor of 2 at.% Nd3+ doped Y2O3 was synthesized by gelation of sol of yttrium and neodymium nitrates with l-alanine at 80 °C for 16 h followed by gel combustion in microwave. A part of microwave precursor was heat treated at 700 °C for 5 h to give the partially crystalline Nd:Y2O3 amorphous precursor. Thermogravimetric analysis (TGA) of partially crystalline amorphous precursor of Nd:Y2O3 gave 8.5% total weight loss indicating removal of maximum organics. X-Ray diffraction (XRD) showed broad peaks indicating incomplete crystallization of cubic Nd:Y2O3. Morphology was found to be close to spherical with particles in size range 17–19 nm by TEM. Another part of microwave precursor on calcination at 1000 °C for 3 h led to formation of fully crystalline Nd:Y2O3 with particles in size range of 35–85 nm. Both partially crystalline amorphous precursor and fully crystalline Nd:Y2O3 were compacted at 400 MPa by cold isostatic press and sintered at 1750 °C for 10 h under vacuum (10?5 mbar). The partially crystalline Nd:Y2O3 amorphous precursor densified to 99% with 65% transmission at 2500 nm (0.5 mm thickness) compared to 96% densification with 34% transmission for fully crystalline Nd:Y2O3 without any sintering aids. Retention of cubic phase purity of Y2O3 was observed in both the ceramic pellets post sintering by XRD. Good grain fusion with grain growth to ≤2 μm was observed by scanning electron microscope (SEM) for partially crystalline Nd:Y2O3 amorphous precursor. Thus partially crystalline Nd:Y2O3 amorphous precursor nanopowders, with homogeneous close to spherical fine particles and high reactivity due to ionic mobility of amorphous phase, led to better densification.  相似文献   

10.
《Ceramics International》2016,42(7):8022-8029
This paper reports on the synthesis of uncoated and Eu2O3-coated spherical Y2O3 ceramic particles using optimized hydrothermal (HM) and microwave-assisted hydrothermal (MWHM) routes. The integration of microwave and hydrothermal processes was shown to enhance the reaction kinetics during the synthesis of uncoated Y2O3. Spherical particles of pure Y2O3 phase with an average particle size of 600 nm and uniform size distribution were obtained via the MWHM process at 180 °C following reaction duration of only 1 h. Y2O3 spherical particles were coated with Eu2O3 via a hydrolysis method at room temperature. The band gap of the resulting phosphors was estimated at 5.7 eV. Eu2O3-coated Y2O3 particles synthesized via the HM and MWHM present bright red PL emission under UV excitations; however, Y2O3 particles obtained via the MWHM method are more efficient than those yielded via the HM technique. Eu2O3-coated Y2O3 particles derived using the optimized MWHM technique present efficient emissions of red light with color purity and down conversion efficiency of approximately 85% and 80%, respectively. The present study demonstrates the suitability of employing coated phosphors in optical display technologies.  相似文献   

11.
《Ceramics International》2015,41(6):7766-7772
A series of (1−x)YVO4/xY2O3:Eu3+0.006,Bi3+0.006 (0≤x≤0.54) composite phosphors was synthesized in one step by high temperature solid state reaction and the photoluminescence properties were investigated. By means of co-doping Eu3+ and Bi3+ ions into the composite matrices composed of YVO4 and Y2O3 crystals, the YVO4/Y2O3:Eu3+,Bi3+ phosphor exhibits simultaneously the blue (418 nm), green (540 nm) and orange-red (595, 620 nm) emissions. The broad blue and green emissions are attributed to the 3P11S0 transitions of Bi3+ ion both in Y2O3 and in YVO4 matrices. Moreover, the sharp orange-red emissions are attributed to the 5D07F1,2 transitions of Eu3+ ion in YVO4 matrix. By tuning the mole ratio of YVO4/Y2O3 matrices the white light-emitting could be obtained. The results indicated that when the mole ratio of Y2O3 (x) is at 0.11–0.54 mol, the (1−x)YVO4/xY2O3:Eu3+0.006,Bi3+0.006 phosphors emit white light by combining the blue, green and orange-red emissions under the excitation of 360–370 nm wavelength which matches the emission of the commercial UV-LED diode. This implies that the phosphors may be the promising white light materials with broad absorption band for white light-emitting diodes.  相似文献   

12.
《Ceramics International》2017,43(12):9084-9091
This paper reports the preparation of Eu3+ doped Gadolinium oxyorthosilicate (Gd2SiO5:Eu3+) phosphor with different concentration of Eu3+(0.1–2.5 mol%) using the modified solid state reaction method. The synthesis procedure of the Gd2SiO5:Eu3+phosphor using inorganic materials such as Gd2O3, silicon dioxide (SiO2), europium oxide (Eu2O3) and boric acid (H3BO3) as flux is discussed in detail. The prepared phosphor samples were characterized by using X-Ray Diffraction (XRD), Field Emission Gun Scanning Electron Microscopy (FEGSEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Photoluminescence (PL) and Thermoluminescence (TL). The Commission Internationale de l′Eclairage(CIE) coordinates were also calculated. The PL emission was observed in the 350–630 nm range for the Gd2SiO5:Eu3+ phosphor. PL excitation peaks were observed at 266, 275, 312 and 395 nm while the emission peaks were observed at 380, 416, 437, 545, 579, 589, 607, 615 and 628 nm. The emission peak at 615 nm was the most intense peak for all the different Eu3+ concentration samples. From the XRD data, using the Scherrer's formula, the average crystallite size of the Gd2SiO5:Eu3+ phosphor was calculated to be 33 nm. TL was carried out for the phosphor after both UV and gamma irradiation. The TL response of the Gd2SiO5:Eu3+ phosphor for the two different radiations was compared and studied in detail. It was found that the present phosphor can acts as a single host for red emission (1.5 mol%) for display devices and light emitting diode (LED) and white light emission for Eu3+(0.1 mol%) and it might be used as a TL dosimetric material for gamma dose detection.  相似文献   

13.
《Ceramics International》2016,42(3):4306-4312
Ceramics that exhibit persistent luminescence are usually opaque, which limits their utility. In this work, a laser-sintering technique is employed to produce persistent luminescent SrAl2O4:Eu2+Dy3+ ceramics that has enhanced translucency in the visible spectral range. In this technique, a CO2 laser was used as the main heating source for sintering with no atmosphere control employed. The ceramics sintered at a power density of 3.1 W/mm2 yielded homogeneous grain size distributions and transmittance up to 40% in the range of 600–800 nm. Upon sintering in air, the ceramics exhibited the characteristic green emission from the Eu2+ ion, corresponding to the 5d→4f transition (514 nm) and a weak emission from the Eu3+ ion at 614 nm, corresponding to the 5D07F2 transition. The valence of europium ions was further studied by the X-ray absorption spectroscopy in the XANES region and those details are reported herein.  相似文献   

14.
A series of red-emitting phosphors Eu3+-doped Sr3Y(PO4)3 have been successfully synthesized by conventional solid-state reaction, and its photoluminescence properties have been investigated. The excitation spectra reveal strong excitation bands at 392 nm, which match well with the popular emissions from near-UV light-emitting diode chips. The emission spectra of Sr3Y(PO4)3:Eu3+ phosphors exhibit peaks associated with the 5D0  7FJ (J = 0, 1, 2, 3, 4) transitions of Eu3+ and have dominating emission peak at 612 nm under 392 nm excitation. The integral intensity of the emission spectra of Sr3Y0.94(PO4)3:0.06Eu3+ phosphors excited at 392 nm is about 3.4 times higher than that of Y2O3:Eu3+ commercial red phosphor. The Commission Internationale de l’Eclairage chromaticity coordinates, the quantum efficiencies and decay times of the phosphors excited under 392 nm are also investigated. The experimental results indicate that the Eu3+-doped Sr3Y(PO4)3 phosphors are promising red-emitting phosphors pumped by near-UV light.  相似文献   

15.
《Ceramics International》2017,43(8):6472-6476
Spherical-like Tb3+ and Eu3+ co-doped Gd2O3 nanoparticles with a particle size around 5.5 nm were synthesized by a polyol route. The optimized luminescence property was obtained when 5 mol% Tb3+ and 2 mol% Eu3+ were co-doped. The influence of different polyalcohol solvents (DEG/PEG) on particle size and luminescence properties was investigated. The results show that the nanoparticles Gd2O3:5%Tb3+ prepared in PEG presented greater particle size (around 79 nm) and higher luminescence intensity.  相似文献   

16.
This study is devoted to the preparation of the crystalline powders on the basis of non-agglomerated monodisperse Lu2O3:Eu3+ spherical particles with the diameters in the range of 50–250 nm by the soft chemistry co-precipitation route. The influence of the synthesis parameters on control morphology, particles size and agglomeration in the final Lu2O3:Eu3+ powder was considered. Lu2O3:Eu3+ crystalline powders were characterized by means of electron microscopy methods (TEM, SEM), FT-IR spectroscopy, thermal analysis (TG-DTA) and X-ray diffractometry. The mechanisms of the precursor decomposition and crystallization at the temperatures ranging from 60 to 900 °C were discussed. It was shown that the powders obtained were characterized by the effective luminescence under X-ray excitation in λ = 575–725 nm spectral region corresponding to 5D0  7FJ transitions (J = 0–4) of Eu3+ ions with a maximum at 612 nm and the luminescence intensity strongly depends on annealing temperature. The relative densities of the green-bodies on the basis of Lu2O3:Eu3+ powders were estimated and the sintering of compacts at the temperatures up to 1500 °C was studied.  相似文献   

17.
We report on an effective combination of good dielectric properties with bright red emission in Y3+/Eu3+-codoped ZrO2 thin films. The thin films were deposited on fused silica and Pt/TiO2/SiO2/Si substrates using a chemical solution deposition method. The crystal structure, surface morphology, electrical and optical properties of the thin films were investigated in terms of annealing temperature, and Y3+/Eu3+ doping content. The 5%Eu2O3–3%Y2O3–92%ZrO2 thin film with 400 nm thickness annealed at 700 °C exhibits optimal photoluminescent properties and excellent electrical properties. Under excitation by 396 nm light, the thin film on fused silica substrate shows bright red emission bands centered at 593 nm and 609 nm, which can be attributed to the transitions of Eu3+ ions. Dielectric constant and dissipation factor of the thin films at 1 kHz are 30 and 0.01, respectively, and the capacitance density is about 65.5 nf/cm2 when the bias electric field is less than 500 kV/cm. The thin films also exhibit a low leakage current density and a high optical transmittance with a large band gap.  相似文献   

18.
Barium europium(II) aluminate (BaxEu1?xAl2O4) powders were prepared by a solid-state reaction among barium carbonate (BaCO3), europium oxide (Eu2O3), and alumina (Al2O3) powders at 1400 °C for 3 h under a mixed gas flow of H2 and N2. The powders were characterized by powder X-ray diffraction (XRD), infrared and Raman spectroscopy, and photoluminescence (PL). With increasing Ba2+ content in BaxEu1?xAl2O4, the structure of BaxEu1?xAl2O4 changed from a monoclinic (P21) to hexagonal (P63) phase. The hexagonal (P6322) phase was also observed between the two phases. The XRD pattern of a single Ba0.6Eu0.4Al2O4 phase, which has not been reported in the literature, was refined by the Rietveld method and its structure was confirmed by selected-area electron diffraction. With increasing x value, the emission peak in the PL spectra of BaxEu1?xAl2O4 became weaker (x = 0–0.4) and then more intense (x = 0.6–0.98), and its position showed a blue shift from 520 to 498 nm.  相似文献   

19.
《Ceramics International》2016,42(11):13004-13010
A series of Dy3+ or/and Eu3+ doped Y2Mo4O15 phosphors were successfully synthesized at a low temperature of 600 °C via solid state reaction. The as-prepared phosphors were characterized by X-ray powder diffraction (XRD), scanning electronic microscope (SEM), photoluminescence (PL) excitation, emission spectra and PL decay curves. XRD results demonstrate that Y2Mo4O15: Dy3+, Eu3+ has the monoclinic structure with the space group of p21/C(14). Under the excitation of ultraviolet (UV) or near-UV light, the Dy3+ and Eu3+ ions activated Y2Mo4O15 phosphors exhibit their characteristic emissions in the blue, yellow and red regions. The emitting light color of the Y2Mo4O15: 0.08Dy3+, yEu3+ phosphors can be adjusted by varying the concentration ratio of Dy3+ to Eu3+ ions and a white light is achieved when the doping concentration of Eu3+ is 5%. In addition, the energy transfer from Dy3+ to Eu3+ is also confirmed based on the luminescence spectra and decay curves.  相似文献   

20.
《Ceramics International》2016,42(5):5677-5685
The rare-earth ions (Eu3+, Dy3+) doped Y6WO12 phosphors were prepared by a citrate-based sol–gel method. The morphologies and structural properties of the as-prepared and doped samples were analyzed by scanning electron microscope images and X-ray diffraction patterns. The luminescent properties were studied by examining the excitation and emission spectra of the samples. The Eu3+ and Dy3+ ions doped samples exhibited their characteristic emission bands in the visible region under ultraviolet light excitation. The temperature-dependent photoluminescence (PL) properties of the samples were also investigated. The PL spectra of the synthesized samples by the sol–gel method were compared with those of the bulk sample prepared by a solid-state reaction. Similarly, the Commission International de I’Eclairage chromaticity coordinates and the decay times of Y6WO12:Eu3+ (3 mol%) and Y6WO12:Dy3+ (2 mol%) phosphors were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号