首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The barium titanate–molybdenum composites were prepared through solid state reaction method in argon atmosphere. The microstructure, resistivity, and dielectric properties of the composites were investigated. XRD results indicated that chemical reactions between barium titanate (BaTiO3:BT) and molybdenum (Mo) have taken place during sintering, resulting in the formation of BaMoO4 (BM) and BaTi2O5 (BT2). The resistivity decreased with the increasing amount of Mo in the composites. The composites (when x = 5 and 20 wt.%) showed lower dielectric constant than pure BaTiO3, especially, the dielectric constant (when x = 20 wt.%) reached a minimum value (<104), while composites (when x = 10 and 15 wt.%) showed rather high dielectric constant at temperatures range from 25 °C to 160 °C. The dielectric constant of the composite gradually decreased with increase in frequency at the room temperature. The dielectric constant of composite (when x = 5 wt.%) comes up to 104, and the Tc (Curie temperature) of the composite was relatively higher than that of BT (120 °C).  相似文献   

2.
Barium Titanate–Kaolinite composites were prepared systematically by conventional solid-state method. The crystal structure and dielectric properties of samples were investigated by XRD and dielectric measurements, respectively. XRD results show that new phase BaAl2Si2O8 was formed as kaolinite added into BaTiO3. The 10 wt% kaolinite addition led to a considerable reduction in sintering temperature and a strong densification. The dielectric constant of BaTiO3–Kaolinite composites tended to be stable with increasing of kaolinite content.  相似文献   

3.
Ferroelectrics such as barium–strontium titanates (BSTO) and Mg-doped BSTO are well known as promising candidates for the application in microwave tunable devices including phase shifters, filters, and others operating at microwave frequencies. In this study new bulk ceramics based on BaTiO3 (BTO)–SrTiO3 (STO) with addition of BaNd2Ti4O12 (BNT) solid solution was investigated. The phase correlations, size, and nature of boundaries between phases were studied using scanning electron microscopy (SEM). The effect of compositional change on the unit cell parameters of the perovskite phase, microwave dielectric properties, and tunability under DC field had been studied. The materials with dielectric constant ∼320–700, Qf = 1950–3000 GHz at 3.5 GHz and tunability ∼8.0–31.7% at E = 1 V/μm were achieved.  相似文献   

4.
(Li, Ta, Sb) modified sodium potassium niobate/poly(vinylidene fluoride) [(K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3–PVDF] 0-3 composites were prepared by a cold press technique, and their piezoelectric and dielectric properties were characterized. All composites exhibited good dispersion of ceramic particles in the polymer matrix. The piezoelectric and dielectric constants were found to be enhanced as the concentration of sodium potassium niobate increases. Even though the process is simple, the composite prepared in this study showed better piezoelectric and dielectric properties than PZT–polymer composites. At room temperature, a (K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3–PVDF (7:3) composite revealed a relative dielectric constant, ?r = 166, piezoelectric constant, d33 = 33 pC/N and coercive field, Ec = 5 kV/cm.  相似文献   

5.
《Ceramics International》2017,43(3):3127-3132
Ceramics-polymer nanocomposites consisting of core-shell structured BaTiO3@Al2O3 (BT@Al2O3) nanoparticles as the filler and poly(vinylidene fluoride) (PVDF) as the polymer matrix were fabricated by solution casting. At the same volume fraction, the BT@Al2O3/PVDF nanocomposites, with larger dielectric constant and higher energy density, outperformed the BT/PVDF nanocomposites. The 2.5 vol% BT@Al2O3/PVDF nanocomposites at 360 MV/m had a double more energy density than pure PVDF at 400 MV/m (6.19 vs. 2.30 J/cm3), and a remarkably 42% lower remnant polarization than the 2.5 vol% BT/PVDF nanocomposites (0.99 vs. 1.69 μC/cm2 at 300 MV/m). Such significant enhancement was closely related to the surface modification by Al2O3, which improved the insulation of BT nanoparticles and reduced the contrast of dielectric constant between the filler and the PVDF matrix.  相似文献   

6.
The preparation of precursors of BaTiO3 nanopowders with various amounts of Ag by spray pyrolysis is reported. The precursor powders obtained with hollow and thin-wall particles are composed of uniformly dispersed Ba, Ti, and Ag components. After post-treatment and a simple milling process, the precursor powders, irrespective of the amount of Ag, are transformed into Ag–BaTiO3 composite nanoparticles. The mean particle size of the Ag (10 mol%)–BaTiO3 powders is 142 nm. BaTiO3 pellets containing Ag exhibit dense structures even at a low sintering temperature of 1000 °C. BaTiO3 pellets with 10 mol% Ag show the highest dielectric constant of 2950, as opposed to the pure BaTiO3 pellets (without Ag), whose dielectric constant is 1827.  相似文献   

7.
Doping behaviors of NiO and Nb2O5 in BaTiO3 in two doping ways and dielectric properties of BaTiO3-based X7R ceramics were investigated. When doped in composite form, the additions rendered higher solubility than that doped separately due to the identical valence between the complex (Ni1/32+Nb2/35+)4+ and Ti4+. NiO–Nb2O5 composite oxide was more effective in broadening dielectric constant peaks which was responsible for the temperature-stability of BaTiO3 ceramics. A reduction in grain size was observed in the specimens with 0.5–0.8 mol% NiO–Nb2O5 composite oxide, whereas the abnormal growth of individual grains took place in the 1.0 mol% NiO–Nb2O5 composite oxide-doped specimen. When the specimen of BaTiO3 doped with 0.8 mol% NiO–Nb2O5 composite oxide was sintered at 1300 °C for 1.5 h in air, good dielectric properties were obtained and the requirement of (EIA) X7R specification with a dielectric constant of 4706 and dielectric loss lower than 1.5% were satisfied.  相似文献   

8.
The effects of the BaO·(Nd0.8Bi0.2)2O3·4TiO2 (BNBT) to NiCuZn ferrite ratio and addition of Bi2O3–B2O3–SiO2–ZnO (BBSZ) glass on the sintering behavior, microstructure evolution, dielectric and magnetic properties of BNBT–NiCuZn ferrite composites were investigated in developing low-temperature-fired composites for high frequency electromagnetic interference (EMI) devices. The results indicate that these composites can be densified at 900 °C and exhibit superior dielectric and magnetic properties with the addition of BBSZ glass. The dielectric system used in the ferrite–dielectric composites reported in the previous studies mostly belong to the ferroelectricity group, which are not suitable for use in the high frequency range (>800 MHz) due to the selfresonance frequency limit. In this study, the dielectric constant remains nearly a constant over a wide range of frequencies (100 MHz to 1 GHz) and the magnetic resonance frequencies are larger than 100 MHz for the BNBT + BBSZ glass–NiCuZn ferrite composites. Therefore, the BNBT + BBSZ glass–NiCuZn ferrite composites can be a good candidate material for high frequency EMI device applications.  相似文献   

9.
BaTiO3 based ceramics (with some additives such as ZrO2, SnO2, etc.) were prepared by solid state reaction. Mn2+ or Mn3+ as an acceptor substituting for Ti4+ in B site and Bi3+ as a donor substituting for Ba2+ in A site were co-doped in BaTiO3 based ceramics. The dielectric properties of BaTiO3 based ceramics co-doped with Bi/Mn were investigated. The results show that the dielectric properties of BaTiO3 based ceramics co-doped with Bi/Mn are affected by the mole ratio of donor and acceptor (Bi/Mn). When the mole ratio of donor and acceptor is high, dielectric dispersion behavior was observed and the dielectric constant decrease and remnant polarization, coercive field and piezoelectric constant will varied. When Bi varied from 1.0% to 2.0 mol% (Mn = 0.8 mol%), remnant polarization from 10.35 to 2.25 μC/cm2, coercive field from 4 to 2.75 kV/cm, and piezoelectric constant d33 from 137 to 36 pC/N respectively.  相似文献   

10.
The BaTiO3/BaTiO3@SiO2 (BT/BTS) ceramics with layered structure, where grain size was about 1–2 μm in the BT layer while it was about 300–400 nm in the BTS layer, were fabricated by the tape-casting and lamination method. With the increasing of SiO2 content in the BTS layer, the dielectric constant decreased gradually, and the breakdown strength was remarkably improved. Compared to the SiO2-added BaTiO3 bulk ceramics, the layered ceramics displayed significant enhancements in dielectric properties, breakdown properties and energy storage properties. The enhancement in dielectric properties was mostly attributed to the diluting effects created by this structure to SiO2. Based on the finite element analysis with the dielectric breakdown mode, it was regarded that the electric field redistribution and the interface blocking effect led to the enhancement of breakdown strength. Finally, the maximum energy density of 1.8 J/cm3 was obtained at a breakdown strength of 301.4 kV/cm for the BT/BTS3 ceramic.  相似文献   

11.
《Ceramics International》2016,42(7):8165-8169
Dielectric composites fabricated by combining multi-walled carbon nanotubes (MWCNT) and PbTiO3 (PTO) powder were prepared using a sol–gel process. Well-dispersed PTO powder with various volume ratios of MWCNT was compressed to form a pellet, and then silver electrodes were coated on both sides for electrical measurements. The PTO–MWCNT composite with 0.4 vol% MWCNT showed the highest dielectric constant (912 at 1 kHz), which is approximately 25 times larger than that (37 at 1 kHz) of a pure PbTiO3 pellet. Furthermore, a strong frequency dependence of the dielectric constant in the low frequency range was shown for the PTO–MWCNT composites. Interfacial effects related to dielectric relaxation in composite materials were used to explain an observed increase of the dielectric constant near the percolation threshold.  相似文献   

12.
BaTiO3/xCu composite ceramics with x = 0–30 wt.% were fabricated by the traditional mixing oxide method and their microstructure, relative density, electric conductivity, permittivity and dielectric loss were measured as a function of the Cu mass fraction. The X-ray diffraction (XRD) patterns indicated that the dense composite has no chemical reaction between BaTiO3 and Cu during sintering, and the relative diffraction intensity of Cu increased with the increase of Cu. The electric properties showed that the percolation threshold of BaTiO3/Cu composites was x = 0.25 and its conductivity increased as the Cu content increased after that. With increasing Cu content up to 30 wt.%, the permittivity (?r) markedly increased from ~3000 for monolithic BaTiO3 to ~8000 at 1 kHz. Additionally, the temperature coefficient of this system was less than 5% in the temperature range of 25–115°C.  相似文献   

13.
(1?x)BaTiO3xK0.5Bi0.5TiO3 (abbreviated as BT–KBT, 0.10≦x≦0.15) dielectric ceramics were prepared by a conventional oxide mixing method. The effects of KBT content on the densification, microstructure and dielectric properties of BT ceramics were investigated. The density characterization results show that the addition of KBT significantly lowered the sintering temperature of BT ceramics to about 1280 °C. The XRD results showed that the phase compositions of all samples were pure tetragonal phases. The dielectric constant and dielectric loss firstly increased and then decreased with the increase of KBT. In addition, dielectric constant and dielectric loss versus frequency were characterized in the frequency range from 100 Hz to 2 MHz. It is found that the dielectric constant and the dielectric loss changed with the increase of KBT contents regularly.  相似文献   

14.
Layered BaTiO3–Ni cermet composites with a constant composition but diversified microstructures were produced by a rolling-and-folding processing method. These composites differ from conventional laminates in that their interface has a tendency to be wavy, with a globular or elongated second phase within a continuous matrix phase. Based on an analysis of the (di)electric properties and Monte Carlo simulations we confirmed the critical influence of the composite's microstructural characteristics on the percolation threshold. We found that the dielectric properties of the composite, when it is in the insulation regime, were controlled by the insulating BaTiO3 phase. A giant effective permittivity of around 200 000, with modest losses of tan δ < 0.04, was measured when the percolation threshold approached the composition of the cermet. Partial decomposition and deformation of the layered structure resulted in the creation of conducting paths, whereas further homogenization again shifted the percolation threshold above the actual composition of the cermet.  相似文献   

15.
Nb2O5 and Nb–Co doped 0.85BaTiO3–0.15Bi(Mg1/2Ti1/2)O3 (0.85BT–0.15BMT) ceramics were investigated. From XRD patterns, undesired phase was observed when the (Nb2O5/Nb-Co) doping levels exceed 3 wt.%/2 wt.%, giving rise to the deteriorate dielectric constant. The 0.85BT–0.15BMT ceramics doped with 2 wt.%Nb2O5 was found to possess a moderate dielectric constant (?  1000) and low dielectric loss (tan δ = 0.9%) at room temperature and 1 kHz, showing flat dielectric behavior over the temperature range from ?55 to 155 °C. It was found that the formation of core–shell structure in the BT based ceramics is controlled by the doping sequence of Nb- and Bi-oxides.  相似文献   

16.
BaTiO3–Ni nanopowders have been synthesized via an alkoxide-mediated synthesis route through the hydrolysis and condensation of barium hydroxide octahydrate and titanium (IV) isopropoxide in the presence of submicron sized, spherical Ni particles originating from a commercial Ni paste, that was introduced during the preparation procedure. X-ray diffraction (XRD) patterns indicate that nanocomposite powders of the phases BaTiO3 and Ni could be successfully prepared and tailor-made composition control was confirmed. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the synthesized BaTiO3 nanoparticles were aggregates of nanosized primary particles as small as 40 nm in diameter. The average Ni particle size was estimated to be about 200 nm. Dilatometric measurements on green compacts of these powders revealed that the shrinkage of BaTiO3–Ni composites is retarded compared to both, pure BaTiO3 and Ni. Thermogravimetric analysis (TGA) shows weight losses due to the decomposition of organic binder from Ni paste, the release of water from the surface and of hydroxyl ions from inside the lattice of the BaTiO3 nanoparticles. With the addition of nickel, the dielectric constant increased slightly due to the percolation effect.  相似文献   

17.
In this paper we studied the structural, dielectric, magnetic and magnetoelectric properties of (x)BaTiO3–(1 ? x)Co0.6Zn0.4Fe1.7Mn0.3O4 particulate composite series where x = 0.50, 0.60 and 0.70. BaTiO3–Co0.6Zn0.4Fe1.7Mn0.3O4 composite has the advantage of being non-toxic and environmental friendly from the point of view of device fabrication. High ME voltage coefficients were obtained in the whole series with the highest value of αE  73 mV/cm Oe achieved in sample x = 0.50 containing equal mole fractions of both the component phases. This value of αE is an order of magnitude higher than that of particulate sintered BaTiO3–CoFe2O4 composites (~2–4 mV/cm Oe). Dielectric characteristics for these samples indicated two anomalies: (i) one at low temperature close to ferroelectric to paraelectric transition temperature of pure BaTiO3 and (ii) another at higher temperature related to the magnetic transition in ferrite, a characteristic dielectric feature of composite sample.  相似文献   

18.
This paper investigated dielectric properties of rare earth (Dy, Tb, Eu)-doped barium titanate sintered in pure nitrogen. The substituting concentration of rare earth (Dy, Tb, Eu) was 2.0 mol%. The doping behaviors of intermediate rare-earth ions (Dy, Tb, Eu) and their effects on the dielectric property of barium titanate were investigated. Eu3+ ion was substituted in the A-site of the perovskite lattice. Dy3+ and Tb3+ ions substituted partially for Ti4+ site and partially for Ba2+ site. The different rare earth element had a crucial effect on dielectric properties of rare-earth-doped BaTiO3. Among these doped samples, Tb-doped BaTiO3 had the largest dielectric constant (70,000–80,000); the smallest dielectric loss (less than 4%), and good capacitance-temperature coefficient, which satisfies the X7R specification of the Electronic Industries Association Standards (TCC within ±15% from ?55 °C to 125 °C).  相似文献   

19.
Lead-free (K0.47Na0.51Li0.02)(Nb0.8Ta0.2)O3 (KNLNT) piezoceramic/epoxy composites with 0–3 connectivity were prepared using cold-pressing. The dielectric and piezoelectric properties of the composites were examined as a function of mean particle size (D) within the range of 27–174 μm at a fixed ceramic content of 85 vol%. The dielectric constant increased with D by the combined effects of increased connectivity and decreased surface-to-volume ratio of ceramics. When D = 125 μm, the piezoelectric constant showed a highest value of 44 pC/N that is much greater than those of previous reports on lead-free piezoelectric 0–3 ceramic/polymer composites.  相似文献   

20.
A manganite matrix based nano-composite series, (1 ? x)La0.67Ca0.33MnO3(LCMO)–(x)BaTiO3(BTO), has been prepared by the pyrophoric method. Influence of BTO phase on structural and magneto-transport properties of LCP phase has been studied using structural and transport investigations. The series exhibits a conduction threshold at xm  0.30. Overall pattern of temperature dependence of resistivity for this series has been fitted with a percolation model. Almost 200% improvement has been observed by the formation of composite when compared to the parent sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号