首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two kinds of Ce0.8Gd0.2O2?δ pellets were synthesized by a solid-state reaction using two types of commercial CeO2 and Gd2O3. In contrast to previous reports, pellets with a sintered density of 99% at 1300 °C were obtained regardless the powder used. Mechanochemical activation of the starting materials by 7 h of high energy milling, which resulted in particles several tens of nanometer in size, was effective in reducing the sintering temperature. Ce0.8Gd0.2O2?δ pellets could be synthesized by direct sintering without calcination due to the homogeneous distribution of fine starting materials. The final phase was confirmed by the ionic conductivity, X-ray diffraction patterns and lattice parameters.  相似文献   

2.
Samples of SmxCe1 ? xO2 ? δ (0.05  x  0.55) were prepared by solid-state reactions and the disorder–order phase transition and grain ionic conductivity were investigated using XRD and ac impedance spectroscopy technique, respectively. For 0  x  0.35 the material has a fluorite structure and gradually stabilizes into a C-type rare-earth structure at 0.40  x  0.55 because of oxygen-vacancy ordering. The highest grain ionic conductivity observed is 0.0565(37) S cm?1 at 700 °C for Sm0.20Ce0.80O2 ? δ with an associated activation energy (EA) of 0.791(7) eV. The slopes for EA and pre-exponential factor change during phase transition and the conductivity decreases monotonically. Upon comparison of the EA between the SmO1.5–CeO2 and NdO1.5–CeO2 systems, it is seen EA for the SmO1.5–CeO2 system is lower than NdO1.5–CeO2 system at compositions with less than 25% trivalent rare earth element while higher EA is observed for the SmO1.5–CeO2 system at Nd/Sm concentrations above 25%.  相似文献   

3.
Well-densified 10 mol% Dy2O3-doped CeO2 (20DDC) ceramics with average grain sizes of ∼0.12–1.5 μm were fabricated by pressureless sintering at 950–1550 °C using a reactive powder thermally decomposed from a carbonate precursor, which was synthesized via a carbonate coprecipitation method employing nitrates as the starting salts and ammonium carbonate as the precipitant. Electrical conductivity of the ceramics, measured by the dc three-point impedance method, shows a V-shape curve against the average grain size. The sample with the smallest grain size of 0.12 μm exhibits a high conductivity of ∼10−1.74 S/cm at the measurement temperature of 700 °C, which is about the same conduction level of the micro-grained 10 mol% Sm2O3- or Gd2O3-doped CeO2, two leading electrolyte materials.  相似文献   

4.
A perovskite-type (Ba0.5Sr0.5)0.85Gd0.15Co0.8Fe0.2O3?δ (BSGCF) oxide has been investigated as the cathode of intermediate temperature solid oxide fuel cells (IT-SOFCs). Coulometric titration, thermogravimetry analysis, thermal expansion and four-probe DC resistance measurements indicate that the introduction of Gd3+ ions into the A-site of Ba0.5Sr0.5Co0.8Fe0.2O3?δ (BSCF) leads to the increase in both oxygen nonstoichiometry at room temperature and electrical conductivity. For example, the conductivity of BSGCF is 148 S cm?1 at 507 °C, over 4 times as large as that of BSCF. Furthermore, the electrochemical activity toward the oxygen reduction reaction is also enhanced by the Gd doping. Impedance spectra conducted on symmetrical half cells show that the interfacial polarization resistance of the BSGCF cathode is 0.171 Ω cm2 at 600 °C, smaller than 0.297 Ω cm2 of the BSCF cathode. A Ni/Sm0.2Ce0.8O1.9 anode-supported single cell based on the BSGCF cathode exhibits a peak power density of 551 mW cm?2 at 600 °C.  相似文献   

5.
Sm0.2Ce0.8O1.9 (SDC)–embedded Sm0.5Sr0.5CoO3?δ (SSC) composite fibers were successfully fabricated by electrospinning using commercial SDC nanopowders and an SSC precursor gel containing polyvinyl alcohol (PVA) and hydrated metal nitrate. After calcination of the composite fibers at 800 °C, the fibers of 300 ± 80 nm in diameter with a well-developed SSC cubic-perovskite structure and fluorite SDC were successfully obtained. An anode-supported single cell composed of NiO–Gd0.2Ce0.8O1.9 (GDC)/GDC/SSC–SDC fibers was fabricated, and its electrochemical performance was evaluated. The maximum power densities were 1250 and 360 mW/cm2 at 700 and 550 °C, respectively, which we ascribe to the excellent properties of the SSC fibers with embedded SDC particles such as a highly porous and continuous structure promoting mass transport and a charge transfer reaction.  相似文献   

6.
We report here on the activity and stability of low-content praseodymium–, samarium– and gadolinium–cerium oxide catalysts for the steam reforming of methane under water deficient conditions. These materials display different methane reforming activities, and remain free of praseodymium, samarium and gadolinium oxide phases respectively after use in a reaction gas stream composed of 50% CH4–5% H2O – (in the absence and presence of 50 or 200 ppm H2S) – balance He at 740 °C. The results show that Ce0.8Pr0.2O2  δ, Ce0.85Sm0.15O2  δ and Ce0.9Gd0.1O2  δ are effective catalysts for reforming of methane and H2S in the feed promotes the catalytic activity. Ce0.8Pr0.2O2  δ appeared to attain the highest activity for methane reforming, a feature that is associated with the ability of praseodymium to undergo a red–ox (Pr4 +/Pr3 +) and spreading action in the cerium oxide host structure, possibly resulting in a red–ox relationship between the components.  相似文献   

7.
This study reports the successful preparation of a single-phase cubic (Ba0.5Sr0.5)0.8La0.2CoO3?δ perovskite by the citrate–EDTA complexing method. Its crystal structure, thermogravimetry, coefficient of thermal expansion, electric conductivity, and electrochemical performance were investigated to determine its suitability as a cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Its coefficient of thermal expansion shows abnormal expansion at 300 °C, which is associated with the loss of lattice oxygen. The maximum conductivity of a (Ba0.5Sr0.5)0.8La0.2CoO3?δ electrode is 689 S/cm at 300 °C. Above 300 °C, the electronic conductivity of (Ba0.5Sr0.5)0.8La0.2CoO3?δ decreases due to the formation of oxygen vacancies. The charge-transfer resistance and gas phase diffusion resistance of a (Ba0.5Sr0.5)0.8La0.2CoO3?δ–Ce0.8Sm0.2O1.9 composite cathode are 0.045 Ω cm2 and 0.28 Ω cm2, respectively, at 750 °C.  相似文献   

8.
A carbonate coprecipitation method has been used for the facile synthesis of highly reactive 10 mol% Sm2O3-doped CeO2 (20SDC) nanopowders, employing nitrates as the starting salts and ammonium hydrogen carbonate (AHC) as the precipitant. The AHC/RE3+ (RE = Ce + Sm) molar ratio (R) and the reaction temperature (T) affect significantly the final yield and precursor properties, including chemical composition and particle morphology. Suitable processing conditions are T = 60 °C and R = 5.0–10, under which precipitation is complete and the resultant precursors show ultrafine particle size, spherical particle shape, and good dispersion. Thus, the processed precursors are rare-earth carbonates with an approximate formula of Ce0.8Sm0.2(CO3)1.5·1.8H2O, which directly yield oxide solid-solutions upon thermal decomposition at a low temperature of ∼440 °C. The 20SDC solid solution powders calcined at 700 °C show excellent reactivity and have been densified to ∼99% of the theoretical via pressureless sintering at a very low temperature of 1200 °C for 4 h.  相似文献   

9.
《Ceramics International》2015,41(8):9686-9691
A novel solid state reaction was adopted to prepare Sm0.2Ce0.8O1.9 (SDC) powder. A mixed oxalate Sm0.2Ce0.8(C2O4)1.5·2H2O was synthesized by milling a mixture of cerium acetate hydrate, samarium acetate hydrate, and oxalic acid for 5 h at room temperature. An ultra-fine SDC powder with the primary particle size of 5.5 nm was obtained at 300 °C. The ultra-low temperature for the formation of SDC phase was due to the atomic level mixture of the Sm3+ and Ce4+ ions. The crystal sizes of SDC powders at 300 °C, 550 °C, 800 °C, and 1050 °C were 5.5 nm, 11.4 nm, 24.1 nm and 37.5 nm, respectively. The sintering curves showed that the powder calcined at lower temperature was easier to be sintered owning to its smaller particle size. A solid oxide electrolytic cell (SOEC), comprising porous La0.8Sr0.2Cu0.1Fe0.9O3−δ (LSCF) for substrate, LSCF–SDC for active electrode, SDC for electrolyte, and LSCF–SDC for symmetric electrode, was fabricated by dip-coating and co-sintering techniques. An extremely dense SDC film with the thickness of 20 μm was obtained at only 1200 °C, which was about 100–300 °C lower than the literatures׳ reports. The designed SOEC was proved to work effectively for decomposing NO (3500 ppm, balanced in N2), 80% NO can be decomposed at 600 °C.  相似文献   

10.
Crystalline yttria and calcia doped ceria powder, with a composition of Ce0.8Y0.18Ca0.02O2?δ has been prepared by a coprecipitation procedure from the corresponding nitrates of component cations. Nanopowder was obtained after thermal treatment at 700 °C 2 h of the coprecipitated mixtures. Specific surface area was 45 m2/g. Isostatically and uniaxially pressed pellets were prepared from the powder. Sintering behaviour was followed by CHR dilatometer. Isothermal sintering was carried out between 1100 and 1300 °C. Apparent density as high as 98% Dth was attained by firing isostatically pressed pellets at 1150 °C 4 h. Uniaxially pressed pellets attained the same apparent density at 1275 °C 2 h, being in both cases very low the densification temperatures. Microstructure was observed by scanning electron microscopy (SEM). Ionic conductivity was determined by complex impedance spectroscopy. Bulk and grain boundary conductivities have similar values, and the total conductivity attains good value compatible with the use as electrolyte in solid oxide fuel cell (SOFC).  相似文献   

11.
Advanced oxygen separation units are based on thin mixed ionic–electronic conducting ceramic layers that are mechanically supported by a porous substrate. One of the most important aspects for the long-term stability at elevated temperatures is the creep behaviour, which was assessed in the current study for various potential membrane and substrate materials. Systematic creep tests were carried out in air in the temperature range 700–1200 °C, under compressive loads of 20–120 MPa. The steady-state strain rates were described by a standard creep equation. LSCF38, MgO and all investigated cerium oxides (CeO2?δ and its three Gd-/Pr-doped variations: Ce0.8Gd0.2?xPrxO2?0.5(0.2?x)?δ, with x = 0, 0.1 and 0.2) satisfied at around 800 °C a creep limit criterion, suggested to be necessary to warrant reliable long-term stability for membrane systems, but only ceria materials and MgO fulfilled this requirement also at higher temperatures.  相似文献   

12.
A facile coprecipitation and deposition precipitation method were used for synthesis of nanosized Ce0.8Tb0.2O2−δ (CT) and Ce0.8Tb0.2O2−δ/TiO2 (CTT) solid solutions, respectively. The synthesized materials were characterized by various state-of-the-art techniques and evaluated for CO oxidation activity. Formation of CT solid solution was confirmed by XRD and Raman, and nanocrystalline nature by TEM. Characterization results further suggested formation of a new pyrochlore phase between TiO2 and TbO2 at 1073 K, and the presence of Ce3+ associated with lattice defects in all samples. Catalytic results showed that CT calcined at 773 K exhibits a high activity and correlates well with physicochemical characteristics.  相似文献   

13.
Crystalline scandia-doped ceria powders, with Ce0.92Sc0.08O2?δ and Ce0.82Sc0.18O2?δ compositions have been prepared by three different procedures: (a) mechanochemical route from the starting oxides; (b) co-precipitation of hydroxides from an aqueous solution; (c) solid state reaction between oxides. Nanopowders were only obtained from the two first routes. Isothermal sintering was carried out between 1200 and 1500 °C. Apparent density as high as 99% Dth was achieved by sintering at 1300 °C for 2 h from co-precipitated powders. Temperature was further reduced, and 99% Dth was also obtained by SPS at 950 °C of Ce0.82Sc0.18O2?δ mechanically activated powders. Sc2O3 was observed as a secondary phase for all the samples containing 18 at% Sc, whereas only traces were pointed out in the 8 at% Sc samples. Total conductivity attains lower values than those measured in other ceria solid solutions, at difference of that observed in cubic Sc-stabilized zirconia.  相似文献   

14.
《Ceramics International》2016,42(3):4285-4289
Decreasing the electrolyte thickness is an effective approach to improve solid oxide fuel cells (SOFCs) performance for intermediate-temperature applications. Sm0.2Ce0.8O2−δ (SDC) powders with low apparent density of 32±0.3 mg cm−3 are synthesized by microwave combustion method, and SDC electrolyte films as thin as ~10 μm are fabricated by co-pressing the powders onto a porous NiO–SDC anode substrate. Dense SDC electrolyte thin films with grain size of 300–800 nm are achieved at a low co-firing temperature of 1200 °C. Single cells based on SDC thin films show peak power densities of 0.86 W cm−2 at 650 °C using 3 vol% humidified H2 as fuel and ambient air as oxidant. Both the thin thickness of electrolyte films and ultra-fine grained anode structure make contributions to the improved cell performance.  相似文献   

15.
Fluorite oxides Ce0.8Sm0.1Ln0.1O1.9 (denoted as SDC for singular doping and LnSDC for Ln=La, Nd, Y and Eu), were prepared by the citric acid–nitrate combustion reaction to act as electrolytes for intermediate-temperature solid oxide fuel cells (IT-SOFC). The thermal decomposition, phase identification, morphology, density, particle size distribution and electrical properties of the samples were studied by TGA/TDA, XRD, SEM, the Archimedes method, a laser size analyzer and Impedance spectroscopy, respectively. All crystallite powders that calcined at 800 °C had a cubic fluorite structure; the average crystallite size was between 63 and 68.5 nm. The pellets were then sintered at 1400 °C in air for 7 h. The relative densities of these pellets were over 95%, which was in good agreement with the results of the SEM. The impedance measurements were performed in an open circuit using two electrode configurations. The results showed that Ce0.8Sm0.1La0.1O1.9 had the highest electrical conductivity, σ700 °C, equal to 6.59×10?2 S cm?1 and the lowest activation energy equal to 0.85 eV. It was therefore concluded that co-doping with the appropriate rare-earth cations can further improve the electrical properties of ceria electrolytes.  相似文献   

16.
Ni1?xFex bimetallic-based cermet anodes were investigated for hydrocarbon-fueled solid oxide fuel cells. Ni1?xFex–Ce0.8Gd0.2O1.9 cermet anodes were synthesized using a glycine nitrate process, and their electrical conductivity and the amount of carbon deposits were found to decrease with increasing Fe content. The anode polarization resistance for the CH4 fuel was significantly reduced by Fe alloying, which was strongly related to the carbon deposition behavior. The maximum power density of the single cell with Ni0.85Fe0.15–Ce0.8Gd0.2O1.9 in CH4 at 800 °C was 0.27 W/cm2. Fe alloying significantly improved the electrochemical performance of solid oxide fuel cells in CH4 fuel by suppressing carbon deposition.  相似文献   

17.
Thin Gd2O3 films with a thickness of about 150 nm were deposited by pulsed layer deposition on polycrystalline CeO2 substrates to study the structural evolution of the Ce1−xGdxO2−x/2 system with respect to phase formation and cation interdiffusion in the temperature range between 986 °C and 1270 °C. Transmission electron microscopy combined with quantitative energy dispersive X-ray spectroscopy was applied to study the microstructure and to obtain composition profiles across the Gd2O3/CeO2-interface. Gd2O3 was observed to occur in the bixbyite structure up to 1175 °C. The fluorite and the bixbyite phase are found at intermediate compositions without any indication for a miscibility gap. Interdiffusion coefficients were obtained from Gd2O3/CeO2-concentration profiles on the basis of the diffusion-couple solution of the diffusion equation. The activation enthalpy and frequency factor of the diffusion coefficient were derived assuming an Arrhenius-type behavior in the investigated temperature range.  相似文献   

18.
《Ceramics International》2015,41(4):5836-5842
Sm- and Gd-doped ceria electrolytes Ce0.9Gd0.1O1.95 (GDC) and Ce0.9Sm0.1O1.95 (SDC) were prepared by using the Pechini method. The microstructural and physical properties of the samples were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry/differential thermal analysis (TG/DTA) and Fourier Transform Infrared Spectroscopy (FTIR). The TG/DTA and XRD results indicated that a single-phase fluorite structure formed at a relatively low calcination temperature, 400 °C. The XRD patterns of the samples revealed that the crystallization of the SDC powders was superior than that of the GDC powders at 400 °C. The sintering behavior and ionic conductivity of the GDC and SDC pellets were also investigated. The sintering results showed that the SDC samples were found to have higher sinterability than the GDC samples at a relatively low sintering temperature, 1300 °C, a significantly lower temperature than 1650 °C, which is required for ceria solid electrolytes prepared by solid state techniques. The impedance spectroscopy results revealed that SDC has a higher ionic conductivity compared to GDC.  相似文献   

19.
Infiltration is a method, which can be applied for the electrode preparation. In this paper oxygen electrode is prepared solely by the infiltration of La0.6Sr0.4Co0.2Fe0.8O3‐δ (LSCF) into Ce0.8Gd0.2O2-δ (CGO) backbone. The use a polymer precursor as an infiltrating medium, instead of an aqueous nitrate salts solution is presented. It is shown that the polymer forms the single-phase perovskite at 600 °C, contrary to the nitrates solution. As a result, obtained area specific resistance (ASR) is lowered from 0.21 Ω cm2 to 0.16 Ω cm2 at 600 °C. More than 35% of LSCF in the oxygen electrode decreases the performance.  相似文献   

20.
The scope of the present work is to study the thermal and chemical compatibility between a Ni–Ce0.9Gd0.1O1.95 cermet, with 39 vol.% Ni, and two electrolytes based on Ce0.9Gd0.1O1.95 (GDC). The cermet was synthesized as a composite NiO–Ce0.9Gd0.1O1.95 by a polymeric organic complex solution method and subsequently reduced to Ni–Ce0.9Gd0.1O1.95 cermet. The GDC electrolytes were prepared by: (a) chemical precipitation process with nitrates as precursors and (NH4)OH as precipitant agent and (b) from a commercial submicronic powder modified with 1.0 wt.% Bi2O3 for improving the sintering mechanism.The anode was fixed on the electrolyte by isostatic pressing of powders and the obtained sandwich was cosintered between 1350 and 1400 °C for 2 h to obtain dense electrolytes with high ionic conductivity along with well-developed anode/electrolyte interfaces of solid oxide fuel cells. The cosintered anode/electrolyte interfaces were characterized by using scanning electron microscopy. The study of the possible diffusion of nickel from the anode into the electrolyte was performed by EDAX analysis. The reaction products formed into cosintered materials were determined by X-ray diffraction (XRD). It is found that the anode is compatible with both electrolytes up to 1400 °C without formation of new phases at these temperatures even during prolonged treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号