首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pure BiFeO3 (BFO) and (Bi0.9Gd0.1)(Fe0.975V0.025)O3+δ(BGFVO) thin films were prepared on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. The improved electrical properties were observed in the BGFVO thin film. The leakage current density of the co-doped BGFVO thin film showed two orders lower than that of the pure BFO, 8.1×10?5 A/cm2 at 100 kV/cm. The remnant polarization (2Pr) and the coercive electric field (2Ec) of the BGFVO thin film were 54 μC/cm2 and 1148 kV/cm with applied electric field of 1100 kV/cm at a frequency of 1 kHz, respectively. The 2Pr values of the BGFVO thin film show the dependence of measurement frequency, and it has been fairly saturated at about 30 kHz.  相似文献   

2.
Pure BiFeO3 (BFO) and (Bi0.9RE0.1)(Fe0.975Cu0.025)O3?δ (RE=Ho and Tb, denoted by BHFCu and BTFCu) thin films were prepared on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. The BHFCu and BTFCu thin films showed improved electrical and ferroelectric properties compared to pure BFO thin film. Among them, the BTFCu thin film exhibited large remnant polarization (2Pr), low coercive field (2Ec) and reduced leakage current density, which are 89.15 C/cm2 and 345 kV/cm at 1000 kV/cm and 5.38×10?5 A/cm2 at 100 kV/cm, respectively.  相似文献   

3.
0.95Pb(Sc0.5Ta0.5)O3–0.05%PbTiO3 (PSTT5) thin films with and without a Pb(Zr0.52,Ti0.48)O3 (PZT52/48) seed layer were deposited on Pt/Ti/SiO2/Si(1 0 0) substrates by RF magnetron sputtering. X-ray diffraction patterns indicate that the PSTT5 film with a PZT52/48 seed layer exhibited nearly pure perovskite crystalline phase with highly (4 0 0)-preferred orientation. Piezoresponse force microscopy observations reveal that a large out-of-plane spontaneous polarization exists in the highly (4 0 0)-oriented PSTT5 thin film. The PSTT5/PZT(52/48) possesses good ferroelectric properties with large remnant polarization Pr (12 μC/cm2) and low coercive field Ec (110 kV/cm). Moreover, The perfect butterfly-shaped capacitance–voltage characteristic curve and the relative dielectric constant as high as 733 is obtained in this PSTT5 thin film at 100 kHz.  相似文献   

4.
《Ceramics International》2017,43(16):13063-13068
PbTiO3 (PTO), Pb(Mn0.1Ti0.9)O3 (PMTO), Pb(Sr0.1Ti0.9)O3 (PSTO), and Pb(Zr0.1Ti0.9)O3 (PZTO) were prepared on an indium tin oxide (ITO)/glass substrate by a sol-gel method. PTO, PMTO, PSTO, and PZTO films exhibited energy band gaps of 3.55 eV, 3.63 eV, 3.59 eV, and 3.66 eV, respectively. All these films generated high photocurrents due to high shift currents, because carrier migration channels were successfully introduced by a lattice mismatch between the films and ITO substrates. The PMTO thin film exhibited the best ferroelectric and photovoltaic properties, with a photovoltage of 0.74 V, a photocurrent density of 70 μA/cm2, and a fill factor of 43.34%, which confirms that shift current and ferroelectric polarization are two main factors that affect the ferroelectric photovoltaic properties. The PSTO, PZTO, and PTO thin films displayed space-charge-limited current (SCLC) when the electric field strength was below 10 kV/cm, and these three films broke down when the electric field strength was above 10 kV/cm. Analysis of the shift current mechanism confirmed that the breakdown of the PZTO and PSTO thin films resulted from Pool Frenkel emission current. The PMTO thin film displayed SCLC in the test range, which indicates that doping with Mn could inhibit defect formation in ferroelectric thin films.  相似文献   

5.
《Ceramics International》2016,42(8):9577-9582
In the current study, a series of lanthanide ions, Tm, Yb and Lu, were used for doping at the Bi-site of the Aurivillius phase Na0.5Bi4.5Ti4O15 (NaBTi) to investigate the structural, electrical and ferroelectric properties of the thin films. In this regard, Na0.5Bi4.5Ti4O15 and the rare earth metal ion-doped Na0.5Bi4.0RE0.5i4O15 (RE=Tm, Yb and Lu, denoted by NaBTmTi, NaBYbTi, and NaBLuTi, respectively) thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. Formations of the Aurivillius phase orthorhombic structures for all the thin films were confirmed by X-ray diffraction and Raman spectroscopic studies. Based on the experimental results, the rare earth metal ion-doped Na0.5Bi4.0RE0.5Ti4O15 thin films exhibited a low leakage current and the improved ferroelectric properties. Among the thin films, the NaBLuTi thin film exhibited a low leakage current density of 6.96×10−7 A/cm2 at an applied electric field of 100 kV/cm and a large remnant polarization (2Pr) of 26.7 μC/cm2 at an applied electric field of 475 kV/cm.  相似文献   

6.
The 0.6[0.94Pb(Zn1/3Nb2/3)O3 + 0.06BaTiO3] + 0.4[0.48(PbZrO3) + 0.52(PbTiO3)], PBZNZT, thin films were synthesized by pulsed laser deposition (PLD) process. The PBZNZT films possess higher insulating characteristics than the PZT (or PLZT) series materials due to the suppressed formation of defects, therefore, thin-film forms of these materials are expected to exhibit superior ferroelectric properties as compared with the PZT (or PLZT)-series thin films. Moreover, the Ba(Mg1/3Ta2/3)O3 thin film of perovskite structure was used as buffer layer to reduce the substrate temperature necessary for growing the perovskite phase PBZNZT thin films. The PBZNZT thin films of good ferroelectric and dielectric properties (remanent polarization Pr = 26.0 μC/cm2, coercive field Ec = 399 kV/cm, dielectric constant K = 737) were achieved by PLD at 400 °C. Such a low substrate temperature technique makes this process compatible with silicon device process. Moreover, thus obtained PBZNZT thin films also possess good optical properties (about 75% transmittance at 800 nm). These results imply that PBZNZT thin films have potential in photonic device applications.  相似文献   

7.
(Na0.5Bi0.5)0.94Ba0.06TiO3 thin films were deposited on Pt/Ti/SiO2/Si (1 1 1) and LaNiO3/Pt/Ti/SiO2/Si (1 1 1) substrates by a sol–gel process. The phase structure and ferroelectric properties were investigated. The X-ray diffraction pattern indicated that the (Na0.5Bi0.5)0.94Ba0.06TiO3 thin film deposited on Pt/Ti/SiO2/Si (1 1 1) substrates is polycrystalline structure without any preferred orientation. But the thin film deposited on LaNiO3/Pt/Ti/SiO2/Si substrates shows highly (1 0 0) orientation (f  81%). The leakage current density for the two thin films is about 6 × 10?3 A/cm2 at 250 kV/cm, and thin film deposited on LaNiO3/Pt/Ti/SiO2/Si substrates possessed a much lower leakage current under high electric field. The hysteresis loops at an applied electric field of 300 kV/cm and 10 kHz were acquired for the thin films. The thin films deposited on LaNiO3/Pt/Ti/SiO2/Si substrates showed improved ferroelectricity.  相似文献   

8.
Pure and Mn/Y codoped Ba0.67Sr0.33TiO3 (BST) ceramics were fabricated via the citrate–nitrate combustion technique, and the microstructure and electrical properties of BST ceramics were mainly investigated. The Mn/Y codoping concentration has a strong influence on the microstructure and electrical properties of BST ceramics. All BST ceramics possess a pure polycrystalline structure. The density, dielectric loss, leakage current, and ferroelectric properties are improved by codoping 0.5 mol% Mn and 1.0 mol% Y to BST. The relative density of 0.5 mol% Mn/1.0 mol% Y-codoped BST (BST0510) ceramics reaches 97.5% of the theoretical value. BST0510 ceramics have the lowest dielectric loss (tanδ < 0.0073 at 1 kHz) among all BST ceramics. BST0510 ceramics also demonstrate a low leakage current density (1.23 × 10?7 A/cm2) at an applied field of 10 kV/cm, and excellent ferroelectric properties with a remanent polarization of 2Pr = 15.327 μC/cm2 and a coercive field of 2Ec = 3.456 kV/cm. Therefore, the Mn and Y with optimum content help improve the electrical properties of BST materials.  相似文献   

9.
《Ceramics International》2016,42(10):12210-12214
The effects of annealing temperature on the structure, morphology, ferroelectric and dielectric properties of Na0.5Bi0.5Ti0.99W0.01O3+δ (NBTW) thin films are reported in detail. The films are deposited on indium tin oxide/glass substrates by a sol-gel method and the annealing temperature adopted is in the range of 560–620 °C. All the films can be well crystallized into phase-pure perovskite structures and show smooth surfaces without any cracks. Particularly, the NBTW thin film annealed at 600 °C exhibits a relatively large remanent polarization (Pr) of 20 μC/cm2 measured at 750 kV/cm. Additionally, it shows a high dielectric constant of 608 and a low dielectric loss of 0.094 as well as a large dielectric tunability of 62%, making NBTW thin film ideal in the room-temperature tunable device applications.  相似文献   

10.
In this work, the influence of annealing temperature on the ferroelectric electron emission behaviors of 1.3-μm-thick sol–gel PbZr0.52Ti0.48O3 (PZT) thin film emitters was investigated. The results revealed that the PZT films were crack-free in perovskite structure with columnar-like grains. Increasing annealing temperature led to the growth of the grains with improved ferroelectric and dielectric properties. The remnant polarization increased slightly from 35.3 to 39.6 μC/cm2 and the coercive field decreased from the 56.4 to 54.6 kV/cm with increasing annealing temperature from 600 to 700 °C. The PZT film emitters exhibited remarkable ferroelectric electron emission behaviors at the threshold voltage above 95 V. The film annealed at 700 °C showed a relatively lower threshold voltage and higher emission current, which is related to the improved ferroelectric and dielectric properties at higher annealing temperature. The highest emission current achieved in this work was around 25 mA at the trigger voltage of 160 V.  相似文献   

11.
Tunable Ba6Ti2(Nb1−xTax)8O30 (BTN-xTa; x = 0, 0.25, 0.4) thin films with a tetragonal tungsten bronze structure (TTB) were deposited on platinized Si substrates using the pulsed laser deposition (PLD) technique and their properties were investigated from the viewpoint of orientation and ferroelectric phase transition. Crystal structures and dielectric properties were characterized using an X-ray diffractometer and an impedance analyzer. Pure BTN (BTN-0Ta) thin films showed tunability as high as 60% and the tunability decreased as the amounts of Ta-substitution increased at 150 kV/cm and at 1 MHz. The dielectric constants also decreased from 436 to 88 at 1 MHz through the Ta-substitution. The low tunability and dielectric constants of Ta-substituted thin films were mainly ascribed to the lowered ferroelectric transition temperature (Tc). Ferroelectric BTN (BTN-0Ta) thin films may have been changed into a paraelectric state through the Ta-substitution since the Tc of BTN thin films were shifted to temperatures far below room temperatures (approximately −60 °C).  相似文献   

12.
《Ceramics International》2017,43(2):2033-2038
Fe-doped Na0.5Bi0.5TiO3 (NBTFe) thin films were prepared directly on indium tin oxide/glass substrates using a chemical solution deposition method combined with sequential layer annealing. The X-ray diffraction, scanning electron microscopy and insulating/ferroelectric/dielectric measurements were utilized to characterize the NBTFe thin films. All the NBTFe thin films prepared by four precursor solutions with various concentrations of 0.05, 0.10, 0.20 and 0.30 M exhibit polycrystalline perovskite structures with different relative intensities of (l00) peaks. A large remanent polarization (Pr) of 33.90 μC/cm2 can be obtained in NBTFe film derived with 0.10 M spin-on solution due to its lower leakage current and larger grain size compared to those of other samples. Also, it shows a relatively symmetric coercive field and large dielectric tunability of 36.34%. Meanwhile, the NBTFe thin film with 0.20 M has a high energy-storage density of 30.15 J/cm3 and efficiency of 61.05%. These results indicate that the electrical performance can be controlled by optimizing the solution molarity.  相似文献   

13.
We report on an effective combination of good dielectric properties with bright red emission in Y3+/Eu3+-codoped ZrO2 thin films. The thin films were deposited on fused silica and Pt/TiO2/SiO2/Si substrates using a chemical solution deposition method. The crystal structure, surface morphology, electrical and optical properties of the thin films were investigated in terms of annealing temperature, and Y3+/Eu3+ doping content. The 5%Eu2O3–3%Y2O3–92%ZrO2 thin film with 400 nm thickness annealed at 700 °C exhibits optimal photoluminescent properties and excellent electrical properties. Under excitation by 396 nm light, the thin film on fused silica substrate shows bright red emission bands centered at 593 nm and 609 nm, which can be attributed to the transitions of Eu3+ ions. Dielectric constant and dissipation factor of the thin films at 1 kHz are 30 and 0.01, respectively, and the capacitance density is about 65.5 nf/cm2 when the bias electric field is less than 500 kV/cm. The thin films also exhibit a low leakage current density and a high optical transmittance with a large band gap.  相似文献   

14.
To compensate for bismuth loss that occurred during the film deposition process, Bi1.5Zn1.0Nb1.5O7 (BZN) thin films were deposited at room temperature from the ceramic targets containing various excess amounts of bismuth (0–20 mol%) on Pt/TiO2/SiO2/Si substrates by using RF magnetron sputtering technique. The effect of bismuth excess content on the microstructure and electrical properties of BZN thin films was studied. The microstructure and chemical states of the thin films were studied by SEM and XPS. EPMA was employed to assess the film stoichiometry. The X-ray diffraction analysis reveals that the BZN thin films exhibit the amorphous structure in nature. An appropriate amount of excess bismuth improves the dielectric and electrical properties of BZN thin films, while too much excess bismuth leads to deterioration of the properties. BZN thin film with 5 mol% excess bismuth exhibits a dielectric constant of 61 with a loss of 0.4% at 10 kHz and leakage current of 7.26×10?7 A/cm2 at an electric field of 200 kV/cm.  相似文献   

15.
(K,Na)NbO3 ferroelectric films were grown on LaNiO3 coated silicon substrates by RF magnetron sputtering. The conductive LaNiO3 films acted as seed layers and induced the highly (001) oriented perovskite (K,Na)NbO3 films. Such films exhibit saturated hysteresis loops and have a remnant polarization (2Pr) of 23 μC/cm2, and coercive field (2Ec) of 139 kV/cm. The films showed a fatigue-free behavior up to 109 switching cycles. A high tunability of 65.7% (@300 kV/cm) was obtained in the films. The leakage current density of the films is about 6.0×10?8 A/cm2 at an electric field of 50 kV/cm.  相似文献   

16.
《Ceramics International》2016,42(14):15338-15342
2 at% Manganese-doped Na0.5Bi0.5TiO3 (NBTMn) thin films with single-layer thicknesses ranging from 15 to 45 nm/l were deposited on the indium tin oxide/glass substrates by a metal organic decomposition process and spin coating technique. The influence of single-layer thickness on the crystal structure, surface morphology, insulating ability, ferroelectric and dielectric properties was mainly investigated. Compared with the other films, NBTMn film with a single-layer thickness of 30 nm/l exhibits the (110)-preferred orientation and dense structure. Also, it shows the enhanced ferroelectricity with a large remanent polarization (Pr) of 38 μC/cm2 due to the preferred orientation and low leakage current density. Meanwhile, a high dielectric tunability of 39% for NBTMn with 30 nm/l can be observed by varying the measuring applied voltage and frequency. These results indicate that the suitable layer thickness is beneficial to improve the electrical performances of NBTMn thin film.  相似文献   

17.
《Ceramics International》2016,42(12):13432-13441
The current study explored the influence of Mn substitution on the electrical and magnetic properties of BiFeO3 (BFO) thin films synthesized using low cost chemical solution deposition technique. X-ray diffraction analysis revealed that pure rhombohedral phase of BiFeO3 was transformed to the tetragonal structure with P4mm symmetry on Mn substitution. A leakage current density of 5.7×10−4 A/cm2 which is about two orders of magnitude lower than pure BFO was observed in 3% Mn doped BFO thin film at an external electric field >400 kV/cm. A well saturated (p-E) loops with saturation polarization (Psat) and remanent polarization (2Pr) as high as 60.34 µC/cm2 and 25.06 µC/cm2 were observed in 10% Mn substituted BFO thin films. An escalation in dielectric tunability (nr), figure of merit (K) and quality factor (Q) were observed in suitable Mn doped BFO thin films. The magnetic measurement revealed that Mn substituted BFO thin films showed a large saturation magnetization compared to pure BFO thin film. The highest saturation ~31 emu/cc was observed for 3% Mn substituted BFO thin films.  相似文献   

18.
The effect of Sn:Ti variations on antiferroelectric to ferroelectric phase transition of (Pb0.97La0.02)(Zr0.65Sn0.35?xTix)O3 (x = 0.08–0.11) ceramics with compositions near antiferroelectric to ferroelectric morphotropic phase boundary was studied. X-ray diffraction showed that all samples were tetragonal phase at room temperature. With the increase of x from 0.08 to 0.1, all samples showed the typical antiferroelectric double loops. The critical value EAF of the electric-field induced antiferroelectric to ferroelectric phase transition decreased from 64 kV/cm to 38 kV/cm, and the electric field EFA of induced-ferroelectric to antiferroelectric phase transition decreased from 44 kV/cm to 10 kV/cm. A high polarization of the sample with x = 0.1 can be induced with a lower electric filed. The variations of Sn:Ti ratio had no effect on hysteresis of ΔE (=EAF ? EFA), but ΔE reduced with temperature increasing. The virgin sample of which x = 0.11 was intrinsic antiferroelectric phase, but the remanent polarization of induced-ferroelectric phase remained after electric-field was removed at room temperature.  相似文献   

19.
Lead free ferroelectric ceramics near the morphotropic phase boundary (MPB) of KxNa1?x(NbO3)/KNN system (where x=0.48, 0.50, 0.52) were synthesized in the single perovskite phase by the partial co-precipitation synthesis route. The compositional dependences of phase, structure and electrical properties were studied in detail. X-ray diffraction (XRD) study revealed the coexistence of orthorhombic and monoclinic structures in K0.50N0.50NbO3. SEM characterization of the sintered KNN ceramics revealed dense and homogeneous packing of grains. Room temperature (RT) dielectric constant (εr) ~648, dielectric loss (tan δ) ~0.05 at 100 kHz, a relatively high density (ρ) ~4.49 g/cm3, remnant polarization (Pr) ~11.76 μC/cm2, coercive field (Ec) ~9.81 kV/cm, Curie temperature (Tc) ~372 °C and piezoelectric coefficient (d33) ~71 pC/N observed in K0.50N0.50NbO3 suggested that it can be an important lead free ferroelectric material.  相似文献   

20.
《Ceramics International》2017,43(16):13371-13376
Lead free Bi0.5(Na0.8K0.2)0.5TiO3 thin films doped with BiFeO3 (abbreviated as BNKT-xBFO) (x = 0, 0.02, 0.04, 0.08, 0.10) were deposited on Pt(111)/Ti/SiO2/Si substrates by sol-gel/spin coating technique and the effects of BiFeO3 content on the crystal structure and electrical properties were investigated in detail. The results showed that all the BNKT-xBFO thin films exhibited a single perovskite phase structure and high-dense surface. Reduced leakage current density, enhanced dielectric and ferroelectric properties were achieved at the optimal composition of BNKT-0.10BFO thin films, with a leakage current density, dielectric constant, dielectric loss and maximum polarization of < 2 × 10−4 A/cm3, ~ 978, ~ 0.028 and ~ 74.13 μC/cm2 at room temperature, respectively. Moreover, the BNKT-0.10BFO thin films possessed superior energy storage properties due to their slim P-E loops and large maximum polarization, with an energy storage density of 22.12 J/cm3 and an energy conversion efficiency of 60.85% under a relatively low electric field of 1200 kV/cm. Furthermore, the first half period of the BNKT-0.10BFO thin film capacitor was about 0.15 μs, during which most charges and energy were released. The large recoverable energy density and the fast discharge process indicated the potential application of the BNKT-0.10BFO thin films in electrostatic capacitors and embedded devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号