首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Li2O–Nb2O5–TiO2 based ceramic systems have been the candidate materials for LTCC application, due to their high dielectric constant and Q × f value and controllable temperature coefficient in the microwave region. However, the sintering temperature was relatively higher (above 1100 °C) for practical application. In this study, dielectric properties of Li(1+xy)Nb(1−x−3y)Ti(x+4y)O3 solid solution were studied with different x and y contents and among them, the Li1.0Nb0.6Ti0.5O3 composition (x = 0.1, y = 0.1) was selected, due to its reasonable dielectric properties to determine the possibility of low temperature sintering. The effects of 0.17Li2O–0.83V2O5, as a sintering agent, on sinterability and microwave dielectric properties of Li1.0Nb0.6Ti0.5O3 ceramics were investigated as a function of the sintering agent content and sintering temperature. With addition of 0.17Li2O–0.83V2O5 above 0.5 wt%, the specimens were well densified at a relatively lower temperature of 850 °C. Only slight decrease in apparent density was observed with increasing 0.17Li2O–0.83V2O5 content above 0.75 wt%. In the case of 0.5 wt% 0.17Li2O–0.83V2O5 addition, the values of dielectric constant and Q × f reached maximum. Further addition caused inferior microstructure, resulting in degraded dielectric properties. For the specimens with 0.5 wt% 0.17Li2O–0.83V2O5 sintered at 850 °C, dielectric constant, Q × f and TCF values were 64.7, 5933 GHz and 9.4 ppm per °C, respectively.  相似文献   

2.
LiV3O8 cathode material was synthesized via a hydrothermal improved sol–gel process using LiOH, NH4VO3 and oxalic acid as raw materials. The thermal decomposition process of the as-prepared LiV3O8 precursor was investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC). The structure, morphology and electrochemical performance of the as-synthesized LiV3O8 samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM) and the galvanostatic charge–discharge test. The effects of synthesis conditions on phases, structure and electrochemical performance of the LiV3O8 samples were particularly discussed. Result shows that pure LiV3O8 sample can be obtained at 300 °C, which is much lower than that of normal citric assisted sol–gel method. The sample synthesized at 350 °C exhibits the best electrochemical performance, which can present an initial discharge capacity of 301.1 mAh/g at a current density of 50 mA/g and maintain 271.6 mA/g (about 90.2% of its initial value) after 10 cycles.  相似文献   

3.
LiNi1?yCoyO2 (y=0.1, 0.3, and 0.5) were synthesized by a solid-state reaction method at 800 °C and 850 °C using Li2CO3, NiO, and Co3O4 as the starting materials. The electrochemical properties of the synthesized LiNi1?yCoyO2 were then investigated. For samples with the same composition, the particles synthesized at 850 °C were larger than those synthesized at 800 °C. The particles of all the samples synthesized at 850 °C were larger than those synthesized at 800 °C. LiNi0.5Co0.5O2 synthesized at 850 °C had the largest first discharge capacity (159 mA h/g), followed in order by LiNi0.7Co0.3O2 synthesized at 800 °C (158 mA h/g) and LiNi0.9Co0.1O2 synthesized at 850 °C (151 mA h/g). LiNi0.9Co0.1O2 synthesized at 850 °C had the best cycling performance with discharge capacities of 151 mA h/g at n=1 and 156 mA h/g at n=5.  相似文献   

4.
《Ceramics International》2017,43(17):14836-14841
Molybdenum doping is introduced to improve the electrochemical performance of lithium-rich manganese-based cathode material. X-ray diffraction (XRD) results illustrate that the crystallographic parameters a, c and lattice volume V become larger with the increase of Mo content. The scanning electron microscope (SEM) shows that the molybdenum substitution increases the crystallinity of the primary particles. When evaluated as cathode material, the as-prepared Li[Li0.2Mn0.54-x/3Ni0.13-x/3Co0.13-x/3Mox]O2 (x = 0.007) delivers a discharge capacity of 155.5 mA h g−1 at 5 C (1 C = 250 mA g−1) and exhibits the capacity retention of 81.8% at 1 C after 200 cycles. The results of cyclic voltammetry (CV) and electronic impedance spectroscopy (EIS) tests reflect that the molybdenum substitution is able to significantly reduce the electrode polarization and lower the charge-transfer resistance. Within appropriate amount of Mo doping, the lithium ion diffusion coefficient of the material can reach to 8.92 × 10–15 cm2 s−1, which is ~ 30 times higher than that of pristine materials (2.65 × 10–16 cm2 s−1).  相似文献   

5.
《Ceramics International》2015,41(8):9662-9667
LiMgxMn2−xO4 (x≤0.10) cathode materials for lithium-ion batteries were prepared by molten-salt combustion and then structurally characterized by powder X-ray diffraction. All the cathode materials were identified as the spinel structure of LiMn2O4 and the lattice parameter decreased as the Mg content of LiMgxMn2−xO4 increased. Scanning electron microscopy revealed that the average particle size and agglomeration decreased with increasing Mg content. Galvanostatic charge–discharge experiments showed that Mg doping could effectively enhance the cycling performance of the cathode materials. LiMg0.05Mn1.95O4 demonstrated excellent electrochemical performance with an initial discharge specific capacity of 122.0 mA h g−1 and capacity retention of 86.4% after 100 cycles at 0.5 C (1 C=148 mA g−1). Rate performance, cyclic voltammetry and electrochemical impedance spectroscopy measurements showed that the Mg-doped spinels had high rate capability and reversible cycling performance.  相似文献   

6.
The Li2Mg1?xZnxTi3O8 (x = 0–1) and Li2A1?xCaxTi3O8 (A = Mg, Zn and x = 0–0.2) ceramics are synthesized by solid-state ceramic route and the microwave dielectric properties are investigated. The Li2MgTi3O8 ceramic shows ?r = 27.2, Qu × f = 42,000 GHz, and τf = (+)3.2 ppm/°C and Li2ZnTi3O8 has ?r = 25.6, Qu × f = 72,000 GHz, and τf = (?)11.2 ppm/°C respectively when sintered at 1075 °C/4 h. The Li2Mg0.9Zn0.1Ti3O8 dielectric ceramic composition shows the best dielectric properties with ?r = 27, Qu × f = 62,000 GHz, and τf = (+)1.1 ppm/°C. The effect of Ca substitution on the structure, microstructure and microwave dielectric properties of Li2A1?xCaxTi3O8 (A = Mg, Zn and x = 0–0.2) has also been investigated. The materials reported in this paper are excellent in terms of dielectric properties and cost of production compared to commercially available high Q dielectric resonators.  相似文献   

7.
Lithium trivanadate (LiV3O8) crystallites have been synthesized via sol–gel processing using oxalic, tartaric, citric and malic acid as the chelating agents. The thermal decomposition process of the as-prepared LiV3O8 precursor was investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC). The structure, morphology and electrochemical performance of the as-synthesized LiV3O8 samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and the galvanostatic charge–discharge test. Different chelating agents were introduced to investigate their effects on the products composition, morphology and electrochemical properties. Result show that the samples prepared with oxalic and tartaric acid are similar to show thin rod-like morphology in submicron size distribution while the samples prepared with citric and malic acid are found consisting of block-like crystallities in micron size. Further electrochemical results exhibit that the LiV3O8 particles with oxalic, tartaric, citric and malic acid exhibit an initial discharge capacity of 304.4 mA h/g, 296.8 mA h/g, 268.7 mA h/g and 275.3 mA h/g, respectively. After 20 cycles, they retain discharge capacity of 250.2 mA h/g, 237.6 mA h/g, 198.5 mA h/g and 206.8 mA h/g, respectively.  相似文献   

8.
《Ceramics International》2016,42(13):14855-14861
Pure spherical Li4Ti5O12 spinel material is quickly synthesized via an efficient hydrothermal procedure. The obtained Li4Ti5O12 particle size is about 0.5 µm. The Li4Ti5O12 has an initial discharge capacity of 162.2 mA h g−1 and capacity retention of 97.5% after 100 cycles at a rate of 0.2 C. Then, a 2.5 V and long-lasting Li-ion cell with a LiMn2O4 cathode and a Li4Ti5O12 anode is developed. Electrochemical measurements of the cell indicate that the Li4Ti5O12/LiMn2O4 full cell, with a weight ratio of 1.5 between cathode and anode, exhibits excellent electrochemical performance, delivering a reversible capacity of 130 mA h g−1 at room temperature. The full cell also exhibits outstanding electrochemical performances at high temperature, as it has an initial discharge capacity of 109.6 mA h g−1, along with a capacity retention rate of 88.9% after 100 cycles at 55 °C.  相似文献   

9.
《Ceramics International》2017,43(10):7908-7915
In this work, Li5Cr7Ti6O25 as a new anode material for rechargeable batteries is fabricated through a simple sol-gel method at different calcination temperatures. The X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, charge/discharge curve and cyclic voltammograms are utilized to study the crystal structures, morphologies and electrochemical properties of as-obtained Li5Cr7Ti6O25 samples. The impact of calcination temperatures on morphologies and electrochemical properties of Li5Cr7Ti6O25 is discussed in detail. The test result shows that the 800 °C is a proper calcination temperature for Li5Cr7Ti6O25 with excellent electrochemical properties. Cycled at 200 mA g−1, it displays a high initial reversible capacity of 146.6 mA h g−1 and retains a considerable capacity of 130.8 mA h g−1 after 300 cycles. Even cycled at large current density of 500 mA g−1, the initial reversible capacity of 129.6 mA h g−1 with the capacity retention of 88% after 300 cycles is achieved, which is obviously higher than that of Li5Cr7Ti6O25 prepared at 700 °C (80.5 mA h g−1 and 68%) and 900 °C (98.4 mA h g−1 and 80%). In addition, in-situ XRD analysis reveals that Li5Cr7Ti6O25 exhibits a reversible structural change during lithiation and delithiation processes. The above prominent electrochemical performance indicates the great potential of the Li5Cr7Ti6O25 obtained at 800 °C as anode material for rechargeable batteries.  相似文献   

10.
BaxSr1−xCo0.8Fe0.2O3−δ (0.3  x  0.7) composite oxides were prepared and characterized. The crystal structure, thermal expansion and electrical conductivity were studied by X-ray diffraction, dilatometer and four-point DC, respectively. For x  0.6 compositions, cubic perovskite structure was obtained and the lattice constant increased with increasing Ba content. Large amount of lattice oxygen was lost below 550 °C, which had significant effects on thermal and electrical properties. All the dilatometric curves had an inflection at about 350–500 °C, and thermal expansion coefficients were very high between 50 and 1000 °C with the value larger than 20 × 10−6 °C−1. The conductivity were larger than 30 S cm−1 above 500 °C except for x > 0.5 compositions. Furthermore, conductivity relaxation behaviors were also investigated at temperature 400–550 °C. Generally, Ba0.4Sr0.6Co0.8Fe0‘2O3−δ and Ba0.5Sr0.5Co0.8Fe0.2O3−δ are potential cathode materials.  相似文献   

11.
《Ceramics International》2017,43(18):16167-16173
In this work, a series of low-temperature-firing (1−x)Mg2SiO4xLi2TiO3–8 wt% LiF (x = 35–85 wt%) microwave dielectric ceramics was prepared through conventional solid state reaction. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses showed that the Li2TiO3 phase was transformed into cubic phase LiTiO2 phase and secondary phase Li2TiSiO5. Partial substitution of Mg2+ ions for Ti3+ ions or Li+Ti3+ ions increased the cell volume of the LiTiO2 phase. The dense microstructures were obtained in low Li2TiO3 content (x ≤ 65 wt%) samples sintered at 900 °C, whereas the small quantity of pores presented in high Li2TiO3 content (x ≥ 75 wt%) samples sintered at 900 °C and low Li2TiO3 content (x = 45 wt%) sintered at 850 and 950 °C. Samples at x = 45 wt% under sintering at 900 °C for 4 h showed excellent microwave dielectric properties of εr = 10.7, high Q × f = 237,400 GHz and near-zero τf = − 3.0 ppm/°C. The ceramic also exhibited excellent chemical compatibility with Ag. Thus, the fabricated material could be a possible candidate for low temperature co-fired ceramic (LTCC) applications.  相似文献   

12.
《Ceramics International》2016,42(5):5693-5698
The spinel LiZnxMn2−xO4 (x≤0.10) cathode materials have been synthesized by solution combustion method at 600 °C for 3 h. The structure and the morphology of LiZnxMn2−xO4 were characterized by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM), respectively. All the obtained samples were identified as the spinel structure of LiMn2O4, the lattice parameters of samples decreased and the particle size increased as the Zn content increased. The effects of Zn-doping on the electrochemical characteristics of LiMn2O4 were investigated by galvanostatic charge–discharge experiments, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Among them, LiZn0.05Mn1.95O4 particles presented outstanding cycling stability with a capacity retention of 82.9% at a discharge rate of 1 C (1 C=148 mA h g−1) after 500 cycles. Spinel LiZn0.05Mn1.95O4 had reversible cycling performance, revealing that doping LiMn2O4 with Zn improves its electrochemical performance.  相似文献   

13.
《Ceramics International》2016,42(15):16557-16562
A novel Li3V2(PO4)3 composite modified with Fe-doping followed by C+SiO2 hybrid layer coating (LVFP/C-Si) is successfully synthesized via an ultrasonic-assisted solid-state method, and characterized by XRD, XPS, TEM, galvanostatic charge/discharge measurements, CV and EIS. This LVFP/C-Si electrode shows a significantly improved electrochemical performance. It presents an initial discharge capacity as high as 170.8 mA h g−1 at 1 C, and even delivers an excellent initial capacity of 153.6 mA h g−1 with capacity retention of 82.3% after 100 cycles at 5 C. The results demonstrate that this novel modification with doping followed by hybrid layer coating is an ideal design to obtain both high capacity and long cycle performance for Li3V2(PO4)3 and other polyanion cathode materials in lithium ion batteries.  相似文献   

14.
Lithium niobate (LixNb1?xO3+δ) powders with various compositions are prepared via combustion synthesis. The thermal properties, crystal structure, and surface morphology of the as-prepared lithium niobate powders are characterized by thermogravimetric and differential thermal analyses (TG/DTA), powder X-ray diffraction (XRD), and scanning electron microscopy (SEM). When the calcination temperature reached 900 °C, the secondary phases Li3NbO4 and LiNb3O8 were observed. The lithium concentration before 900 °C was 40–43%. The lattice parameters increased slightly with decreasing concentration of lithium ions. When the calcination temperature was higher than 900 °C, the major Li0.91NbO3 phase and the minor LiNbO3 phase coexisted in the nonstoichiometric lithium niobate with 43% lithium content.  相似文献   

15.
A Li2ZnGe3O8 ceramic was investigated as a promising microwave dielectric material for low-temperature co-fired ceramics applications. Li2ZnGe3O8 ceramic was prepared via the conventional solid-state method. X-ray diffraction data shows that Li2ZnGe3O8 ceramic crystallized into a cubic spinel structure with a space group of P4132. Dense ceramic with a relative densities of 96.3% were obtained when sintered at 945 °C for 4 h and exhibited the optimum microwave properties with a relative permittivity (εr) of 10.3, a quality factor (Q × f) of 47,400 GHz (at 13.3 GHz), and a temperature coefficient of resonance frequency (τf) of −63.9 ppm/°C. The large negative τf of Li2ZnGe3O8 ceramic could be compensated by rutile TiO2, and 0.9Li2ZnGe3O8–0.1TiO20·1TiO2 ceramic sintered at 950 °C for 4 h exhibited improved microwave dielectric properties with a near-zero τf of −1.6 ppm/°C along with εr of 11.3 and a Q × f of 35,800 GHz (11.6 GHz). Moreover, Li2ZnGe3O8 was found to be chemically compatible with silver electrode when sintered at 945 °C.  相似文献   

16.
Nanocrystalline SOFC cathode materials of perovskite family, La1?xSrxM1?yCoyO3, where 0 < x  0.5, 0 < y  0.8 (M is transitional metal = Mn or Fe), have been synthesized at a relatively low temperature by combustion synthesis using alanine as a novel fuel. Detailed X-ray powder diffraction analyses show 47–96% phase purity in the as-synthesized powder and upon calcination at ~825 °C single-phase material is obtained wherein the nanocrystallinity (crystallite size ~19–24 nm) is retained. Densification studies of the materials are carried out within 900–1100 °C. The coefficient of thermal expansion (CTE) of these cathodes is measured. Electrical conductivity of the cathodes sintered at different temperatures are measured in the temperature range 700–900 °C and correlated with the density of the sintered materials. The electrochemical performances of Ni-YSZ anode-supported SOFC having YSZ electrolyte (~10 μm) with CGO interlayer (~15 μm) are studied with the developed cathodes in the temperature range 700–800 °C using H2 as fuel and oxygen as oxidant. Highest current density of ~1.7 A/cm2 is achieved during testing at 800 °C measured at 0.7 V with a cathode composition of La0.5Sr0.5Co0.8Fe0.2O3. Precipitation of nanocrystalline grains over the core grains in porous microstructure of this cathode might be one of the reasons for such high cell performance.  相似文献   

17.
Ceramic glaze containing Li2O and ZnO was prepared at a low firing temperature of 1100 °C. Addition of 0–30 wt.% iron oxide content developed brown color with a metallic sparkling effect from crystallization after soaking at 980–1080 °C. Using XRD, SEM/EDS and Raman microscopy the crystalline phases were determined as lithium zinc ferrite (LixZn1?2xFe2+xO4 where x = 0.05–0.20), hematite (α-Fe2O3) and anorthite (CaAl2Si2O8). The most preferable metallic sparkling effect was caused by the lithium zinc ferrite phase obtained from the glaze containing 10 wt.% of iron oxide. Thermal analysis by STA after heat treatment indicated that crystallization temperature of lithium zinc ferrite and the effective soaking temperature depended on the iron oxide content in the glaze. The influence of excessive iron oxide content on the crystallization behavior of lithium zinc ferrite, anorthite and hematite phases is discussed.  相似文献   

18.
《Ceramics International》2016,42(9):10943-10950
A series of Li3−xNaxV2(PO4)3/C (0≤x≤3) materials are successfully prepared by a simple solid-state reaction method and used for the first time as anode materials for Na-ion batteries. Powder X-ray diffraction (XRD) results show that the phase structures of Li3−xNaxV2(PO4)3/C evolve along with the change of Li/Na atomic ratio (0≤x≤3). With increasing x in Li3−xNaxV2(PO4)3/C from 0.0 to 3.0, the main phase in as-prepared sample transforms from monoclinic Li3V2(PO4)3 to rhombohedral Li3V2(PO4)3, and finally to rhombohedral Na3V2(PO4)3, which results in different sodium storage behavior and performance between Li3−xNaxV2(PO4)3/C (0≤x≤3) materials. Electrochemical results show that Li3−xNaxV2(PO4)3/C (x=0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0) can deliver the initial charge capacities of 21.1, 35.9, 33.8, 41.7, 43.3, 43.9 and 47.7 mAh g−1 at a current density of 10 mA g−1, respectively. After 45 cycles, the reversible capacities can be kept at 16.9, 45.1, 32.6, 44.6, 43.7, 37.8 and 27.3 mAh g−1 for Li3V2(PO4)3/C, Li2.5Na0.5V2(PO4)3/C, Li2NaV2(PO4)3/C, Li1.5Na1.5V2(PO4)3/C, LiNa2V2(PO4)3/C, Li0.5Na2.5V2(PO4)3/C and Na3V2(PO4)3/C, respectively. Furthermore, the structural reversibility of Li3−xNaxV2(PO4)3/C (x=1.0, 2.0, and 3.0) is also observed by in-situ XRD observation during sodiation/de-sodiation process. All these observed evidences indicate that only some of Li3−xNaxV2(PO4)3/C (0≤x≤3) can be used as possible sodium storage materials.  相似文献   

19.
In the past years, a major interest has been devoted to decrease the working temperature of solid oxide fuel cells (SOFCs) down to about 700 °C.Apatite materials (La10?xSrxSi6O27?x/2) are attractive candidates for solid electrolytes, with a high ionic conductivity at 700 °C, a chemical and a dimensional stability for a pO2 ranging from 10?25 to 0.2 atm. A perovskite oxide (La0.75Sr0.25Mn0.8Co0.2O3?δ) has been used as a cathode material.Symmetrical cathode/electrolyte/cathode cells were fabricated by stacking layers obtained by tape casting of apatite and perovskite powders and co-sintering at 1400 °C for 2 h in air.Impedance spectroscopy measurements were performed on these cells in order to determine the electrode resistance. It has been shown that the latter decreases with the porosity content of the cathode and with the use of a composite material (apatite/perovskite) instead of a simple perovskite.  相似文献   

20.
《Ceramics International》2016,42(9):10608-10613
xBaTiO3–(1−x)(0.5Bi(Mg1/2Ti1/2)O3-0.5BiScO3) or xBT–(1−x)(0.5BMT–0.5BS) (x=0.45–0.60) ceramics were prepared by using the conventional mixed oxide method. Perovskite structure with pseudo-cubic symmetry was observed in all the compositions. Dielectric measurement results indicated that all the samples showed dielectric relaxation behavior. As the content BaTiO3 was decreased from 0.60 to 0.45, temperature coefficient of permittivity (TCε) in the range of 200–400 °C was improved from −706 to −152 ppm/°C, while the permittivity at 400 °C was increased from 1208 to 1613. The temperature stability of permittivity was further improved by using 2 mol% Ba-deficiency. It was found that lattice parameter and grain size of the 2 mol% Ba-deficient ceramics were smaller than those of their corresponding stoichiometric (S) counterparts, with TCε in the range of 200–400 °C to be improved noticeably. For example, TCε of the Ba-deficiency sample with x=0.45 was −75 ppm/°C in the temperature range of 200–400 °C and the permittivity was 1567 at 400 °C. The results obtained in this work indicated that xBT–(1−x)(0.5BMT–0.5BS) ceramics are very promising candidates for high temperature capacitor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号