首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
判别局部排列是基于谱分析片排列框架下的降维算法,但是,算法只能针对单流形数据进行降维.针对判别局部排列算法存在的缺陷,着重研究了多流形学习和半监督学习技术,利用标签传播算法(LP)和线性重构分析,提出一种流行结构保持的半监督降维算法,利用标签传播后得到的全体样本标签信息进行片都构建,并通过求解目标函数的最优解来获得低维嵌入.在YALE和FERET这两个标准人连数据库上的实验,验证了算法的有效性能并体现了算法在分类上的良好性能.  相似文献   

2.
Wang  Guoqiang  Gong  Lei  Pang  Yajun  Shi  Nianfeng 《Neural Processing Letters》2020,51(1):611-638
Neural Processing Letters - In this paper, we propose an effective dimensionality reduction algorithm named Discriminant Collaborative Locality Preserving Projections (DCLPP), which takes advantage...  相似文献   

3.
Understanding the world we live in requires access to a large amount of background knowledge: the commonsense knowledge that most people have and most computer systems don't. Many of the limitations of artificial intelligence today relate to the problem of acquiring and understanding common sense. The Open Mind Common Sense project began to collect common sense from volunteers on the Internet starting in 2000. The collected information is converted to a semantic network called ConceptNet. Reducing the dimensionality of ConceptNet's graph structure gives a matrix representation called AnalogySpace, which reveals large-scale patterns in the data, smoothes over noise, and predicts new knowledge. Extending this work, we have created a method that uses singular value decomposition to aid in the integration of systems or representations. This technique, called blending, can be harnessed to find and exploit correlations between different resources, enabling commonsense reasoning over a broader domain.  相似文献   

4.
On Discriminative Bayesian Network Classifiers and Logistic Regression   总被引:4,自引:1,他引:4  
Discriminative learning of the parameters in the naive Bayes model is known to be equivalent to a logistic regression problem. Here we show that the same fact holds for much more general Bayesian network models, as long as the corresponding network structure satisfies a certain graph-theoretic property. The property holds for naive Bayes but also for more complex structures such as tree-augmented naive Bayes (TAN) as well as for mixed diagnostic-discriminative structures. Our results imply that for networks satisfying our property, the conditional likelihood cannot have local maxima so that the global maximum can be found by simple local optimization methods. We also show that if this property does not hold, then in general the conditional likelihood can have local, non-global maxima. We illustrate our theoretical results by empirical experiments with local optimization in a conditional naive Bayes model. Furthermore, we provide a heuristic strategy for pruning the number of parameters and relevant features in such models. For many data sets, we obtain good results with heavily pruned submodels containing many fewer parameters than the original naive Bayes model.Editors: Pedro Larrañaga, Jose A. Lozano, Jose M. Peña and Iñaki Inza  相似文献   

5.
Conditional random fields (CRFs) are a statistical framework that has recently gained in popularity in both the automatic speech recognition (ASR) and natural language processing communities because of the different nature of assumptions that are made in predicting sequences of labels compared to the more traditional hidden Markov model (HMM). In the ASR community, CRFs have been employed in a method similar to that of HMMs, using the sufficient statistics of input data to compute the probability of label sequences given acoustic input. In this paper, we explore the application of CRFs to combine local posterior estimates provided by multilayer perceptrons (MLPs) corresponding to the frame-level prediction of phone classes and phonological attribute classes. We compare phonetic recognition using CRFs to an HMM system trained on the same input features and show that the monophone label CRF is able to achieve superior performance to a monophone-based HMM and performance comparable to a 16 Gaussian mixture triphone-based HMM; in both of these cases, the CRF obtains these results with far fewer free parameters. The CRF is also able to better combine these posterior estimators, achieving a substantial increase in performance over an HMM-based triphone system by mixing the two highly correlated sets of phone class and phonetic attribute class posteriors.  相似文献   

6.
统计模式识别中的维数削减与低损降维   总被引:31,自引:0,他引:31  
较为全面地回顾了统计模式识别中常用的一些特征选择、特征提取等主流特征降维方法,介绍了它们各自的特点及其适用范围,在此基础上,提出了一种新的基于最优分类器——贝叶斯分类器的可用于自动文本分类及其它大样本模式分类的特征选择方法——低损降维.在标准数据集Reuters-21578上进行的仿真实验结果表明,与互信息、χ^2统计量以及文档频率这三种主流文本特征选择方法相比,低损降维的降维效果与互信息、χ^2统计量相当,而优于文档频率.  相似文献   

7.
Understanding facial expressions in image sequences is an easy task for humans. Some of us are capable of lipreading by interpreting the motion of the mouth. Automatic lipreading by a computer is a challenging task, with so far limited success. The inverse problem of synthesizing real looking lip movements is also highly non-trivial. Today, the technology to automatically generate an image series that imitates natural postures is far from perfect. We introduce a new framework for facial image representation, analysis and synthesis, in which we focus just on the lower half of the face, specifically the mouth. It includes interpretation and classification of facial expressions and visual speech recognition, as well as a synthesis procedure of facial expressions that yields natural looking mouth movements. Our image analysis and synthesis processes are based on a parametrization of the mouth configuration set of images. These images are represented as points on a two-dimensional flat manifold that enables us to efficiently define the pronunciation of each word and thereby analyze or synthesize the motion of the lips. We present some examples of automatic lips motion synthesis and lipreading, and propose a generalization of our solution to the problem of lipreading different subjects.  相似文献   

8.
Using Correspondence Analysis to Combine Classifiers   总被引:7,自引:0,他引:7  
Several effective methods have been developed recently for improving predictive performance by generating and combining multiple learned models. The general approach is to create a set of learned models either by applying an algorithm repeatedly to different versions of the training data, or by applying different learning algorithms to the same data. The predictions of the models are then combined according to a voting scheme. This paper focuses on the task of combining the predictions of a set of learned models. The method described uses the strategies of stacking and Correspondence Analysis to model the relationship between the learning examples and their classification by a collection of learned models. A nearest neighbor method is then applied within the resulting representation to classify previously unseen examples. The new algorithm does not perform worse than, and frequently performs significantly better than other combining techniques on a suite of data sets.  相似文献   

9.
Reducing the dimensionality of a classification problem produces a more computationally-efficient system. Since the dimensionality of a classification problem is equivalent to the number of neurons in the first hidden layer of a network, this work shows how to eliminate neurons on that layer and simplify the problem. In the cases where the dimensionality cannot be reduced without some degradation in classification performance, we formulate and solve a constrained optimization problem that allows a trade-off between dimensionality and performance. We introduce a novel penalty function and combine it with bilevel optimization to solve the constrained problem. The performance of our method on synthetic and applied problems is superior to other known penalty functions such as weight decay, weight elimination, and Hoyer's function. An example of dimensionality reduction for hyperspectral image classification demonstrates the practicality of the new method. Finally, we show how the method can be extended to multilayer and multiclass neural network problems.  相似文献   

10.
Bayesian belief nets (BNs) are often used for classification tasks—typically to return the most likely class label for each specified instance. Many BN-learners, however, attempt to find the BN that maximizes a different objective function—viz., likelihood, rather than classification accuracy—typically by first learning an appropriate graphical structure, then finding the parameters for that structure that maximize the likelihood of the data. As these parameters may not maximize the classification accuracy, “discriminative parameter learners” follow the alternative approach of seeking the parameters that maximize conditional likelihood (CL), over the distribution of instances the BN will have to classify. This paper first formally specifies this task, shows how it extends standard logistic regression, and analyzes its inherent sample and computational complexity. We then present a general algorithm for this task, ELR, that applies to arbitrary BN structures and that works effectively even when given incomplete training data. Unfortunately, ELR is not guaranteed to find the parameters that optimize conditional likelihood; moreover, even the optimal-CL parameters need not have minimal classification error. This paper therefore presents empirical evidence that ELR produces effective classifiers, often superior to the ones produced by the standard “generative” algorithms, especially in common situations where the given BN-structure is incorrect.  相似文献   

11.
Some articulated motion representations rely on frame-wise abstractions of the statistical distribution of low-level features such as orientation, color, or relational distributions. As configuration among parts changes with articulated motion, the distribution changes, tracing a trajectory in the latent space of distributions, which we call the configuration space. These trajectories can then be used for recognition using standard techniques such as dynamic time warping. The core theory in this paper concerns embedding the frame-wise distributions, which can be looked upon as probability functions, into a low-dimensional space so that we can estimate various meaningful probabilistic distances such as the Chernoff, Bhattacharya, Matusita, Kullback-Leibler (KL) or symmetric-KL distances based on dot products between points in this space. Apart from computational advantages, this representation also affords speed-normalized matching of motion signatures. Speed normalized representations can be formed by interpolating the configuration trajectories along their arc lengths, without using any knowledge of the temporal scale variations between the sequences. We experiment with five different probabilistic distance measures and show the usefulness of the representation in three different contexts—sign recognition (with large number of possible classes), gesture recognition (with person variations), and classification of human-human interaction sequences (with segmentation problems). We find the importance of using the right distance measure for each situation. The low-dimensional embedding makes matching two to three times faster, while achieving recognition accuracies that are close to those obtained without using a low-dimensional embedding. We also empirically establish the robustness of the representation with respect to low-level parameters, embedding parameters, and temporal-scale parameters.  相似文献   

12.
Patch Alignment for Dimensionality Reduction   总被引:7,自引:0,他引:7  
Spectral analysis-based dimensionality reduction algorithms are important and have been popularly applied in data mining and computer vision applications. To date many algorithms have been developed, e.g., principal component analysis, locally linear embedding, Laplacian eigenmaps, and local tangent space alignment. All of these algorithms have been designed intuitively and pragmatically, i.e., on the basis of the experience and knowledge of experts for their own purposes. Therefore, it will be more informative to provide a systematic framework for understanding the common properties and intrinsic difference in different algorithms. In this paper, we propose such a framework, named patch alignment,” which consists of two stages: part optimization and whole alignment. The framework reveals that 1) algorithms are intrinsically different in the patch optimization stage and 2) all algorithms share an almost identical whole alignment stage. As an application of this framework, we develop a new dimensionality reduction algorithm, termed Discriminative Locality Alignment (DLA), by imposing discriminative information in the part optimization stage. DLA can 1) attack the distribution nonlinearity of measurements; 2) preserve the discriminative ability; and 3) avoid the small-sample-size problem. Thorough empirical studies demonstrate the effectiveness of DLA compared with representative dimensionality reduction algorithms.  相似文献   

13.
Using Architectural Models to Manage and Visualize Runtime Adaptation   总被引:2,自引:0,他引:2  
The architectural runtime configuration management approach provides an accurate model of adaptive software system behavior over time. ARCM improves the visibility and understandability of runtime adaptive processes while allowing human input into the adaptation-control loop.  相似文献   

14.
Locally-weighted regression is a computationally-efficient technique for non-linear regression. However, for high-dimensional data, this technique becomes numerically brittle and computationally too expensive if many local models need to be maintained simultaneously. Thus, local linear dimensionality reduction combined with locally-weighted regression seems to be a promising solution. In this context, we review linear dimensionality-reduction methods, compare their performance on non-parametric locally-linear regression, and discuss their ability to extend to incremental learning. The considered methods belong to the following three groups: (1) reducing dimensionality only on the input data, (2) modeling the joint input-output data distribution, and (3) optimizing the correlation between projection directions and output data. Group 1 contains principal component regression (PCR); group 2 contains principal component analysis (PCA) in joint input and output space, factor analysis, and probabilistic PCA; and group 3 contains reduced rank regression (RRR) and partial least squares (PLS) regression. Among the tested methods, only group 3 managed to achieve robust performance even for a non-optimal number of components (factors or projection directions). In contrast, group 1 and 2 failed for fewer components since these methods rely on the correct estimate of the true intrinsic dimensionality. In group 3, PLS is the only method for which a computationally-efficient incremental implementation exists. Thus, PLS appears to be ideally suited as a building block for a locally-weighted regressor in which projection directions are incrementally added on the fly.  相似文献   

15.
提出了基于聚类的核矩阵维度缩减技术。它的主要思想是首先利用非线性映射≠将原始输入空间变换到某高维特征空间,然后根据k-均值聚类算法缩减训练样本的数目,得到一缩减的代表集,利用该代表集计算得到一组标准正交的基向量,构成一个低维的投影子空间。CENPARMI手写体阿拉伯数字库的试验结果证实了所提算法的有效性。  相似文献   

16.
17.
《软件工程师》2017,(8):7-13
机器学习是近几年研究的热点,维数约简算法是机器学习的必要手段,本文从维数约简算法的定义讲起,介绍了几种典型的数据降维算法,其中包括线性降维和非线性降维,流形学习是非线性降维的代表算法。并且介绍了每个算法的构造过程及其特点,在此基础上分析了所有维数约简算法的执行效率时间和空间复杂度,并且给出了每个算法的特点和算法的核心思想,最后在此基础上给予总结,为后面研究者提供参考和借鉴。  相似文献   

18.
Using Site Semantics to Analyze, Visualize, and Support Navigation   总被引:1,自引:0,他引:1  
To satisfy potential customers of a Web site and to lead them to the goods offered by the site, one should support them in the course of navigation they have embarked on. This paper presents the tool STRATDYN, developed as an add-on module to the Web Usage Miner WUM. WUM not only discovers frequent sequences, but it also allows the inspection of the different paths through the site. STRATDYN extends these capabilities: It tests differences between navigation patterns, described by a number of measures of success and strategy, for statistical significance. This can help to single out the relevant differences between users' behaviors, and it can determine whether a change in the site's design has had the desired effect. STRATDYN also exploits the site's semantics in the classification of navigation behavior and in the visualization of results, displaying navigation patterns as alternative paths through a strategy space. This helps to understand the Web logs, and to communicate analysis results to non-experts. Two case studies investigate search in an online catalog and interaction with an electronic shopping agent in an online store. They show how the results of analysis can lead to proposals for improving a Web site. These highlight the importance of investigating measures not only of eventual success, but also of process, to help users navigate towards the site's offers.  相似文献   

19.
高维数据降维的DCT变换   总被引:3,自引:0,他引:3  
DCT(离散余弦变换)变换是图像压缩中常用的方法之一。基于它的“能量聚集特性”和变换的保距特性,把它用作高维数据降维的预处理手段,主要作用有两个:(1)大幅度降低后续降维的处理维数,减少运算量;(2)降低噪声对数据结构的影响。文中的试验结果表明,对高维数据,尤其是超高维数据的降维加入DCT变换后不但降低了后续降维的计算复杂度,同时也纠正了由于噪声的影响造成的数据结构的破坏。  相似文献   

20.
High-dimensional data is involved in many fields of information processing. However, sometimes, the intrinsic structures of these data can be described by a few degrees of freedom. To discover these degrees of freedom or the low-dimensional nonlinear manifold underlying a high-dimensional space, many manifold learning algorithms have been proposed. Here we describe a novel algorithm, locally linear inlaying (LLI), which combines simple geometric intuitions and rigorously established optimality to compute the global embedding of a nonlinear manifold. Using a divide-and-conquer strategy, LLI gains some advantages in itself. First, its time complexity is linear in the number of data points, and hence LLI can be implemented efficiently. Second, LLI overcomes problems caused by the nonuniform sample distribution. Third, unlike existing algorithms such as isometric feature mapping (Isomap), local tangent space alignment (LTSA), and locally linear coordination (LLC), LLI is robust to noise. In addition, to evaluate the embedding results quantitatively, two criteria based on information theory and Kolmogorov complexity theory, respectively, are proposed. Furthermore, we demonstrated the efficiency and effectiveness of our proposal by synthetic and real-world data sets.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号