首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tin oxide powders were prepared from a homogeneous precipitation using the aqueous solution of SnCl4 with urea as a precipitator at 90 °C and followed by a calcination process. The calcination was performed using two different methods; conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The crystallization of the tin oxide finished at 600 °C regardless of the calcination method used. The crystallite size increased with as the calcination temperature increased due to the crystal growth and agglomeration. The tin oxide calcined using RTA has a relative smaller crystallite size than CFA at the same temperature. The tin oxide powders calcined with RTA showed higher specific surface areas than those that used CFA over a wide range of temperatures.  相似文献   

2.
Nanometric-sized gadolinia (Gd2O3) powders were obtained by applying solid-state displacement reaction at room temperature and low temperature calcination. The XRD analysis revealed that the room temperature product was gadolinium hydroxide, Gd(OH)3. In order to induce crystallization of Gd2O3, the subsequent calcination at 600  1200 °C of the room temperature reaction products was studied. Calculation of average crystallite size (D) as well as separation of the effect of crystallite size and strain of nanocrystals was performed on the basic of Williamson-Hall plots. The morphologies of powders calcined at different temperatures were followed by scanning electron microscopy. The pure cubic Gd2O3 phase was made at 600 °C which converted to monoclinic Gd2O3 phase between 1400° and 1600 °C. High-density (96% of theoretical density) ceramic pellet free of any additives was obtained after pressureless sintering at 1600 °C for 4 h in air, using calcined powder at 600 °C.  相似文献   

3.
Two mol% yttria-partially stabilized zirconia (2Y-PSZ) precursor powders were obtained through a co-precipitation process using ZrOCl2.8H2O and Y(NO3)3.6H2O as starting materials. Phase transformation and crystallite growth behavior have been investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). XRD results show that the crystal structure to be composed of coexisting tetragonal ZrO2 (t-ZrO2) and monoclinic ZrO2 (m-ZrO2) when the 2Y-PSZ freeze dried precursor powders was calcined at 773–1273 K for 2 h. The fraction of m-ZrO2 content is lower than 3.0 % when the calcination temperature is lower than 1073 K, whereas m-ZrO2 content rapidly increases to 8.7 % with the increase of calcination temperature to 1273 K. The crystallite size of t-ZrO2 increases from 12.3 to 30.2 nm when calcination temperature increased from 773 to 1273 K. In addition, the activation energy of t-ZrO2 and m-ZrO2 crytallite growth in 2Y-PSZ freeze dried precursor powders are 29.2 and 21.8 kJ/mol, respectively.  相似文献   

4.
《Ceramics International》2016,42(9):10770-10778
Ho:Y2O3 ceramics were prepared using co-precipitated powders, with ammonium sulfate as dispersant. Y3+ was co-precipitated together with Ho3+ and Zr4+ to produce precursors, which were calcined at 1100–1400 °C to produce yttria-based powders. At calcination temperatures of ≤1300 °C, agglomeration of powders was not observed. When the temperature was increased to 1400 °C, severe agglomeration was detected. Densification was closely related to the calcination temperature: a lower calcination temperature resulted in a faster densification of ceramics to the relative density of 99.7%. The ultimate densification to ~100% was also closely related to powders' impurity level and agglomeration. Grain growth was mainly determined by sintering temperature, but not by the initial crystallite size of powders. The optimal calcination temperature was 1300 °C, at which the obtained Ho:Y2O3 powder was free from agglomeration. Using this powder, the resultant Ho:Y2O3 ceramics showed pore-free microstructure and good optical transparency.  相似文献   

5.
《Ceramics International》2017,43(18):16331-16339
In this study, nanosized nickel oxide (NiO) and nickel (Ni) powders were synthesised via glycine-nitrate (GN) combustion process, assisted by nanocrystalline cellulose (NCC) as a template. Despite the unique morphology of NCC, it has yet to be applied as a sacrificial bio-template for GN combustion process. In addition, NiO and Ni nanoparticles were obtained at relatively low temperatures in this study, whereby the calcination temperatures were varied from 400 °C to 600 °C, with calcination durations of 2, 4, and 6 h. The morphological analysis of the resulting products were conducted using FESEM, which showed uniformly dispersed NiO and Ni particles with average crystallite size of 25 nm and 27 nm, respectively. These results were confirmed using X-ray diffraction (XRD) technique. The Raman and Fourier transform infrared (FTIR) spectra revealed that the molecular fingerprints of the samples were in agreement with each other. Further analyses revealed that samples calcined at 600 °C for 4 h showed the lowest particle size for pure NiO, whereas the lowest particle size for pure Ni was obtained at 400 °C for 4 h. The TGA results were also consistent with the XRD analysis, whereby pure Ni was initially formed and upon heating, had gradually converted into NiO.  相似文献   

6.
A nano-structured mesoporous yttria-stabilized zirconia (YSZ) powders were prepared for the first time using cetyltrimethylammonium bromide (CTAB) as the surfactant and urea as the hydrolyzing agent and using ZrO(NO3)·6H2O and Y(NO3)3·6H2O as inorganic precursors. The Brunauer–Emmett–Teller (BET) surface area, Barrett–Joyner–Halender (BJH) pore size distribution and crystallite/particle size of mesoporous YSZ varied with calcine temperatures were studied. Characterizations revealed that the mesoporous YSZ powder calcined at 600 °C was weakly agglomerated and had a high surface area of 137 m2/g with an average grain size of ∼5.8 nm. It was demonstrated that the mesoporous structure remained up to 900 °C. The low-densified YSZ sample with porosity as high as 33% was prepared from mesoporous YSZ powder sintered at 1500 °C for 6 h.  相似文献   

7.
《Ceramics International》2017,43(9):7123-7135
Nanocomposite powders of gadolinium-doped ceria (GDC, Ce0.8Gd0.2O1.9) were synthesized via thermal treatment of the gel formed by contacting ionic solutions of sodium alginate as the jelling template and metal (gadolinium/cerium) nitrates as the starting material. The influence of calcination temperature and sodium alginate loading fraction on the properties of the synthesized GDC nanocomposite powders was investigated. Characterization was performed by energy dispersive X-ray spectroscopy, powder X-ray diffraction, thermogravimetric analysis, Field Emission Scanning Electron Microscopy, Fourier transformed infrared spectroscopy and nitrogen adsorption/desorption analysis. It was observed that the particle size and the surface area of the produced GDC nanocomposite powders are dominantly controlled by the calcination temperature, while the effect of sodium alginate loading fraction is limited by the range of the calcination temperature. In this study, the smallest mesoporous GDC nanocomposite powder with cubic fluorite structure (8 nm crystallite size and 3.05±0.005 m2/g surface area) was synthesized using 2 wt% of sodium alginate at a calcination temperature of 550 °C (for 4 h). The results of this study could help to perceive the influence of the basic processing variables on the particle size and the other physiochemical properties of GDC nanocomposite powders produced by the ionic-gelation method.  相似文献   

8.
《Ceramics International》2017,43(10):7889-7894
Magnetic cobalt ferrite (CoFe2O4) nanocrystals were synthesized via the hydrothermal method and the crystallite size was measured using Sherrer's equation. Instrumental broadening was a significant parameter for determining crystallite size. The effect of annealing time and calcination on crystallite size and magnetic properties was discussed. It was found that the coercivity was highly dependent on the crystallite size. As the crystallite size increased from 61 to 68.2 nm, room temperature coercivity increased from 1488 Oe to 1700 Oe, while high coercivity (5.2 kOe) was achieved at lower temperature (80 K). It was found that the presence of hematite could affect the crystallite size after calcination.  相似文献   

9.
《Ceramics International》2016,42(13):14992-14998
Mesoporous Zn and Pr modified SnO2-TiO2 mixed powders (Sn:Ti:Zn:Pr contents 60:20:15:5) have been prepared by a modified sol–gel method involving Tripropylamine (TPA) as chelating agent, TritonX100 as template and Polyvinylpyrrolidone as dispersant and stabilizer, respectively. The obtained gels have been dried at different temperatures and calcined in air at 600 and 800 °C, respectively. Phase identification of the synthesized samples and their evolution with the calcination temperature has been performed by X-ray diffraction. N2 adsorption/desorption isotherms were found to be characteristic for mesoporous materials, showing relatively low values for the specific surface area (15–32 m2 g−1) and nanometric sized pores. In case of the sample calcined at 800 °C, a bimodal pore size distribution can be observed, with maxima at 20 and 60 nm. SEM results demonstrate a porous nanocrystalline morphology stable up to 800 °C. The surface chemistry investigated by XPS reveals the presence of the elements on the surface as well as the oxidation states for the detected elements. At 800 °C a diffusion process of Sn from surface to the subsurface/bulk region accompanied by a segregation of Ti and Zn to the surface is noticed, while Pr content is unchanged. The sensing properties of the prepared powders for CO detection have been tested in the range of 250–2000 ppm and working temperatures of 227–477 °C.  相似文献   

10.
《Ceramics International》2017,43(16):13635-13644
Trirutile-type CuSb2O6 nanoparticles were synthesized by a simple and economical route, starting from copper nitrate, antimony chloride, ethylenediamine, and ethyl alcohol as solvent. The latter was evaporated by microwave radiation at 140 W. The precursor material was calcined at 200, 300, 400, 500, and 600 °C, and analyzed by powder XRD. The oxide phase was obtained at the last calcination step (600 °C), whose powders were analyzed by field-emission scanning electron (FE-SEM) and transmission electron (TEM) microscopies. Microrods, hexagonal microplates, and nanoparticles with an average size of ~ 51.2 nm were observed. A forbidden bandwidth of 3.41 eV was detected for the direct transition with UV–vis. Tests were carried out on pellets made of the powders in carbon monoxide (CO) and propane (C3H8) atmospheres at different concentrations and operating temperatures, obtaining high response at 300 ppm of CO and 500 ppm of C3H8, both at 300 °C.  相似文献   

11.
Nano-powders of La0.6Sr0.4CoO3?x (LSC) and Sm0.5Sr0.5CoO3?x (SSC) compositions, which are being investigated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs) with La(Sr)Ga(Mg)O3?x (LSGM) as the electrolyte, were synthesized by low-temperature sol–gel method using metal nitrates and citric acid. Thermal decomposition of the citrate gels was followed by simultaneous DSC/TGA methods. Development of phases in the gels, on heat treatments at various temperatures, was monitored by X-ray diffraction. Sol–gel powders calcined at 550–1000 °C consisted of a number of phases. Single perovskite phase La0.6Sr0.4CoO3?x or Sm0.5Sr0.5CoO3?x powders were obtained at 1200 °C and 1300 °C, respectively. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy. The average crystallite size of the powders was ~15 nm after 700 °C calcinations and slowly increased to 70–100 nm after heat treatments at 1300–1400 °C.  相似文献   

12.
《Ceramics International》2015,41(4):5318-5330
CuFe2−xCrxO4 spinel (0≤x≤2) powders were synthesized by a soft chemistry method—the gluconate multimetallic complex precursor route. The complex precursors were characterized by elemental chemical analysis, infrared (IR) and ultraviolet–visible (UV–vis) spectroscopy, thermal analysis and Mössbauer spectroscopy. The oxide powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), IR, Raman and Mössbauer spectroscopy. It was shown that the structure, morphology and magnetic properties of the obtained spinel powders depend on the concentration of Cr3+ ion. The XRD of the chromium substituted copper ferrite powders calcined at 700 °C/1 h indicated the formation of a cubic spinel type structure for x=0.5, 1.0 and a tetragonal structure for x=0, 0.2, 2. The crystallite size ranged from 19 nm to 39 nm. The Mössbauer spectroscopy revealed the site occupancy of iron ions, relative abundance and internal hyperfine magnetic fields in both tetrahedral and cubic CuFe2−xCrxO4 spinels.  相似文献   

13.
《Ceramics International》2017,43(11):8051-8056
Nanocrystalline samaria (8 mol%) doped zirconium oxide (8SmSZ) was synthesized using reverse co-precipitation technique, the calcination temperature ranging from 873 K to 1273 K for 2 h. XRD structural analysis results confirm the tetragonal(t) nature of the synthesized 8SmSZ nanocrystalline powder. The calculated crystallite size of tetragonal zirconia calcined at 873 K is around 9.0±0.5 nm and with increase in calcination temperature the size increases to 16.0±0.8 nm (1273 K). Thermogravimetric-Differential thermal analysis (TG-DTA) was carried out to study the crystallisation kinetics and growth behaviour of the 8SmSZ. The activation energy for the crystallisation of tetragonal ZrO2 formation in the 8SmSZ powder was found to be 308.1 kJ/mol by a non-isothermal DTA method. The growth morphology parameter was found to be n=2 indicating two-dimensional growth. The phase stability of the samples after annealing at 1573 K for 100 h was investigated by Raman spectroscopy and it was found that samaria doped zirconia exhibits better phase stability. These preliminary results confirmed the higher phase stability at elevated temperature thereby confirming its suitability in thermal barrier coating (TBC) applications.  相似文献   

14.
Magnesium aluminate spinel (MgAl2O4) spinel powder was synthesized by nitrate citrate auto-ignition route taking different ratios of nitrate and citrate solution. The ‘as prepared’ black ash was calcined at different temperatures in the range 650–1250 °C for 9 h. Phase evolution of calcined powder samples as studied by X-ray diffraction indicates the presence of disorder at lower calcination temperatures, which transforms to an ordered structure at higher calcination temperatures. Finally, Raman spectroscopy confirms the order–disorder phase transition in spinel sample.  相似文献   

15.
The synthesis of zinc oxide (ZnO) nanocrystalline powders for cosmetic applications by a coprecipitation process has been investigated. When the Zn(OH)2 precipitates are calcined at 373 K for 10 min, the crystalline phases comprise the major phase of Zn(OH)2 and the minor phase of ZnO. XRD pattern shows that only ZnO is present and no other phase is detected when the Zn(OH)2 precipitates calcined at 413 K for 10 min. The nanocrystallite size of ZnO increases slightly from 32.3 to 44.3 nm when the calcination temperature increases from 413 to 873 K. The activation energy of ZnO nanocrystallite growth is 2.02 kJ/mol, which reveals that the nanocrystalline ZnO is easily grown at low temperature. The UV transmission of ZnO nanocrystallites in the wavelength range from 290 to 375 nm is about 35%, indicating that the ZnO nanocrystallites have an excellent UV-absorbing capability.  相似文献   

16.
TiO2 nanopowders have been synthesized via Ar/O2 thermal plasma oxidation of titanium butoxide (TBO) solutions stabilized with diethanolamine (DEA). Experiments were conducted by varying the O2 input in the plasma sheath (10–90 L/min) and the DEA/TBO molar ratio (R), while keeping the plasma generation power at 25 kW and the reactor pressure at 500 Torr. The resultant powders are mixtures of the anatase and rutile polymorphs in the studied range, whose anatase content and crystallite size exhibit weak dependence on the O2 input at a fixed R. Increasing R decreases the anatase content, signifying the role of CO gas, generated via oxidation of the organic precursor, on the phase structure. FE-SEM and TEM analysis show that the resultant powders contain majority of nanoparticles (<50 nm) and some large spheres (>100 nm), whose size and/or number tends to decrease at a higher O2 input, leading to gradually increased specific surface area. Raman spectroscopy reveals no significant differences in the crystallite size and oxygen-vacancy concentration of the nanocrystals by varying the O2 input.  相似文献   

17.
Nanocrystalline manganese ferrites (MnFe2O4) have been synthesized by direct milling of metallic manganese (Mn) and iron (Fe) powders in distilled water (H2O). In order to overcome the limitation of wet milling, dry milling procedure has also been utilized to reduce crystallite size. The effects of milling time on the formation and crystallite size of wet milled MnFe2O4 nanoparticles have been investigated. It has been observed that single phase 18.4 nm nanocrystalline MnFe2O4 is obtained after 24 h milling at 400 rpm. Further milling caused deformation of the structure as well as increased crystallite size. With the aim of reducing the crystallite size of 18.4 nm, MnFe2O4 sample dry milling has been implemented for 2 and 4 h at 300 rpm. As a result, the crystallite size has been reduced to 12.4 and 8.7 nm, respectively. Effects of the crystalline sizes on magnetic properties were also investigated. Magnetization results clearly demonstrated that crystallite size has much more effect on the magnetic properties than average particle size.  相似文献   

18.
《Ceramics International》2017,43(9):6996-7001
An efficient and flexible chemical co-precipitation method has been used to synthesize nanoscale Al2O3-GdAlO3 powders with eutectic composition. The as-synthesized powders exhibit a highly dispersive and homogeneous distribution with an average particle size of 50 nm. The phase transition in the resulting powders strongly depends upon the calcination temperature. GdAlO3 undergoes complete crystallization after calcination at 1050 °C, however, the diffraction peaks of α-Al2O3 are found at a relatively high calcination temperature of at least 1300 °C. The fully-densified Al2O3-GdAlO3 ceramic with eutectic composition obtained by hot pressing the nanoscale powders at 1500 °C exhibits a room temperature flexural strength of 556 MPa, a Vickers hardness of 17.3 GPa and a fracture toughness of 7.5 MPa m1/2. The high temperature flexural strength of the as-sintered Al2O3-GdAlO3 ceramic is measured to be 515 MPa after bending tests at 1000 °C.  相似文献   

19.
Transparent lutetium titanate (Lu2Ti2O7) bodies were fabricated by spark plasma sintering using Lu2O3 and TiO2 powders calcined from 700 °C to 1200 °C. No solid-state reaction was identified after calcination at 700 °C, whereas single-phase Lu2Ti2O7 powder was prepared at 1100 and 1200 °C. The calcination at 700 °C promoted densification at the early stages of sintering, whereas residual pores at grain boundaries resulted in Lu2Ti2O7 bodies with low transparency. Low-density and opaque Lu2Ti2O7 bodies formed owing to the coarsening of the powder calcined at 1200 °C. The Lu2Ti2O7 body sintered using the powder calcined at the moderate temperature of 1100 °C had a density of 99.5% with the highest transmittances of 41% and 74% at wavelengths of 550 nm and 2000 nm, respectively.  相似文献   

20.
《Ceramics International》2017,43(11):8482-8487
In this paper, we report on the synthesis of Ce(1−x)ZrxO2 yellow nanopigments (NPs) by a simple green sol-gel method, using gelatin as the stabilization and polymerization agent. Thermogravimetric analysis (TGA) was employed to obtain the optimum gel calcination temperature. The synthesized Ce(1−x)ZrxO2 powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), UV–vis spectroscopy and CIE-L*a*b* measurement. The XRD patterns of the samples calcined at 600 °C revealed the formation of the desired crystal structures without any secondary phases, confirmed by Raman analysis. The TEM images indicated that the pigments' particle shapes are almost spherical with average particle size of about 8 nm. It was found that by increasing Zr+4 concentrations the absorption edge of the produced NPs have a red-shift. The produced NPs had brilliant yellow colour, derived from CIE-L*a*b* coordinates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号