首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(6):6899-6905
In the present article, optical properties and energy upconversion in Er3+/Yb3+ co-doped BiNbO4 matrix were investigated. The BiNbO4 matrix was prepared using the solid-state reaction method. X-ray diffraction of the matrix shows that the crystal structure is consistent with ICSD code 74338. The grain distribution and the behavior of doping with Er3+ and Yb3+ on the sample surface were obtained by scanning electron microscope. Raman spectral characterization was carried out to examine the behavior of the vibrational modes of the samples. Upconversion emissions in the visible region at 484.5, 522, 541.5 and 670.5 nm in the matrices BiNbO4:Er,Yb and BiNbO4:Er were observed and analyzed as a function of 980 nm laser excitation power and rare-earth doping concentration. The results show that BiNbO4 is a promising host material for efficient upconversion phosphors.  相似文献   

2.
A novel upconversion luminescence transparent glass has been successfully synthesized from Er3+/Yb3+ co-doped zeolite powder by Spark Plasma Sintering (SPS) method through the order–disorder transition process. XRD was used to detect the order–disorder transition process of each phase after SPS. These zeolite-derived silica glasses showed enhanced upconversion luminescence under the excitation of 980 nm diode laser, which was caused by the change of phonon energy according to the results of Raman spectrum, and the corresponding energy transfer mechanism was also discussed in detail.  相似文献   

3.
Ho3+/Yb3+ co-doped NaGdTiO4 phosphors were synthesized by a solid-state reaction method. The upconversion (UC) luminescence characteristics excited by 980 nm laser diode were systematically investigated. Bright green UC emission centered at 551 nm accompanied with weak red and near infrared (NIR) UC emissions centered at 652 and 761 nm were observed. The dependence of UC emission intensity on excitation power density showed that all of green, red and NIR UC emissions are involved in two-photon process. The UC emission mechanisms were discussed in detail. Concentration dependence studies indicated that Ho3+ and Yb3+ concentrations had significant influences on UC luminescence intensity and the intensity ratio of the red UC emission to that of the green one. Rate equations were established based on the possible UC mechanisms and a theoretical formula was proposed to describe the concentration dependent UC emission. The UC luminescence properties of the presented material was evaluated by comparing with commercial NaYF4:Er3+, Yb3+ phosphor, and our sample showed a high luminescence efficiency and good color performance, implying potential applications in a variety of fields.  相似文献   

4.
《Ceramics International》2017,43(16):13505-13515
ZnO-TiO2 composites co-doped with Er3+ and Yb3+ ions were successfully synthesized by powder-solution mixing method and their upconversion (UC) luminescence was evaluated. The effect of firing temperature, ZnO/TiO2 mixing ratio, and dopant concentration ranges on structural and UC luminescence properties was investigated. The crystal structure of the product was studied and calculated in detail by means of X-ray diffraction (XRD). Also, the site preference of Er3+ and Yb3+ ions in the host material was considered and analyzed based on XRD results and UC luminescence characteristics. Brightest UC luminescence was observed in the ZnO-TiO2:Er3+,Yb3+ phosphor fired at 1300 °C in which the system consisted of mixed phases; Zn2TiO4, TiO2, RE2Ti2O7 and RE2TiO5 (RE = Er3+ and/or Yb3+). Under the excitation of a 980 nm laser, the two emission bands were detected in the UC emission spectrum, weak green band centered at 544 and 559 nm, and strong red band centered at 657 and 675 nm wavelengths in accordance with 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+ ion, respectively. The simple chemical formula equations, for explaining the site preference of Er3+ and Yb3+ ions in host crystal matrix, were generated by considering the Zn2TiO4 crystal structure, its crystal properties, and the effect of Er3+ and Yb3+ ions to the host crystal matrix. The UC emission intensity of the products was changed by varying ZnO/TiO2 mixing ratios, and Er3+ and Yb3+ concentrations. The best suitable condition for emitting the brightest UC emission was 1ZnO:1TiO2 doped with 3 mol% Er3+, 9 mol% Yb3+ fired at 1300 °C for 1 h.  相似文献   

5.
The crystalline fraction were adjusted MgO concentration and the corresponding effect on upconversion (UC) luminescence in Er3+/Yb3+ co-doped NaYF4 oxyfluorode glass-ceramics was investigated. With increase of MgO and the content of Na2O reduced, the internal network structure of the glass became compact, which made the size of NaYF4 nanocrystals unchanged, while the average distance between the nanocrystals increased significantly. Crystal growth is limited with the glass network, keeping the crystal size not changed. SNM-1 glass ceramics samples show a predominant red up-conversion emission under near infrared excitation at 980 nm, while a predominant green emission is observed in the SNM-3 samples. In this paper, it was indicated that it changed the effect of glass network modifier MgO in the glass structure. The possible mechanism responsible for the color variation of UC in Er3+/Yb3+ co-doped was discussed.  相似文献   

6.
《Ceramics International》2016,42(11):13168-13175
Er3+/Yb3+ co-doped bioactive glasses were prepared via containerless processing in an aerodynamic levitation furnace. The as-prepared glasses were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) equipped with energy dispersive X-Ray spectroscopy (EDX). The up-conversion luminescence of as-prepared glasses was measured using an Omni- 3007 spectrometer. Furthermore, the in vitro bioactivity was evaluated by soaking the materials in simulated body fluid, and the biocompatibility was evaluated in MC3T3-E1 cell culture.The results show that containerless processing is a unique method to prepare homogeneous rare earth doped bioactive glasses. The obtained Er3+/Yb3+ co-doped glasses show green and red up-conversion luminescence at the excitation of 980 nm laser. The XRD analysis confirmed that calcium silicate powders, as starting materials, were completely transformed from the original multi-crystalline phase (CS-P) into the amorphous-glassy phase (CS-G, EYS, LCS) via containerless processing. The SEM observation combined with EDX and FTIR analyses showed that the as-prepared glasses were bioactive. The cell proliferation assay also revealed that the as-prepared glasses were biocompatible and nontoxic to MC3T3-E1 cells. This study suggests that the luminescent bioactive glasses prepared by containerless processing could be used for studying biodegradation of bone implantation materials.  相似文献   

7.
《Ceramics International》2023,49(7):10829-10838
Bi2O3:Yb3+/Er3+ nanoparticles with flower-like morphology were easily synthesized by urea-assisted coprecipitation reactions. The influences of calcination temperature and doping concentration on the crystal phase structures of Bi2O3 and Bi2O3:x%Yb3+/2%Er3+ (x = 0–30) were systematically investigated by XRD analysis. The experimental results revealed that lanthanide doping could effectively improve the thermal stability of Bi2O2CO3 samples, and the monoclinic-to-tetragonal-to-cubic phase transitions of Bi2O3 were implemented by controlling calcination temperatures and introducing smaller lanthanide ions (Ln3+) into the host lattices. Based on the analysis of TG and DSC curves, we found that the fundamental reason for this phase transition was the different stabilities of each crystalline phase under different doping conditions. Upon 980 nm laser excitation, Bi2O3:x%Yb3+/2%Er3+ samples presented near single-band red upconversion emission owing to the efficient energy reabsorption of the Bi2O3 host to Er3+ emission.  相似文献   

8.
Cheng Q  Sui J  Cai W 《Nanoscale》2012,4(3):779-784
β-NaGdF(4)?:?Yb(3+)/Er(3+) nanoparticles (NPs) codoped with Li(+) ions were prepared for the first time via a thermal decomposition reaction of trifluoroacetates in oleylamine. The influence of site occupancy of Li(+) on the upconversion emission of β-NaGdF(4)?:?Yb(3+)/Er(3+) NPs was investigated in detail. The upconversion emission intensity was significantly enhanced by introducing different concentrations of Li(+) ions. In contrast to lithium-free β-NaGdF(4)?:?Yb(3+)/Er(3+), the green and red UC emission intensities of the NPs codoped with 7 mol% Li(+) ions were enhanced by about 47 and 23 times, respectively. The luminescence enhancement should be attributed to the distortion of the local asymmetry around Er(3+) ions. The mechanisms for the enhancement of upconversion emission were discussed. In addition, it was found in our research work that β-NaGdF(4)?:?Yb(3+)/Er(3+) NPs exhibited paramagnetic features at room temperature and the magnetization was slightly increased by introducing Li(+) ions.  相似文献   

9.
Effect of alumina as a glass network intermediate on the up-conversion luminescence (UCL) in NaYF4:Er3+/Yb3+ co-doped oxy-fluoride glass-ceramics (GCs) was investigated. Combinations of smaller NaYF4 nanocrystals (10 and 13 nm) and lower Al2O3 contents (5% and 10%), as well as larger NaYF4 nanocrystals (26 and 40 nm) and higher lower Al2O3 contents (15% and 20%) were prepared after heat-treatment, respectively. The glass network of intermediate partial replacement of SiO2 with Al2O3 was investigated, and the consequence on the response to the up-conversion of the lanthanide ions was also studied. The UCL properties of Er3+ ions were changed in accordance with the addition of Al2O3, the red UCL intensity decreased with an increased Al2O3 concentration, while the green emission intensity showed opposite tendency. Our results showed that adding Al2O3 to 20 mol% is an effective strategy to simultaneous control of the magnitude and luminescence properties of lanthanide ion doped GCs.  相似文献   

10.
The development of noncontact thermal probe based on stable inorganic materials of trivalent lanthanide (Ln3+) doped phosphors with nontoxicity is of vital importance for their promising applications in bio-medical fields. Here we explore the upconversion luminescence and thermal sensing properties of Er3+, Yb3+ co-doped oxysulfide in a broad temperature range of 300-583 K. It was found that constructing an active shell with an optimum concentration of sensitizers is an efficient way to improve both the luminescent intensities and thermal sensitivity. Compared with the core-only sample, the luminescent intensity of the Y2O2S: Er3+, Yb3+@ Y2O2S: 5%Yb3+ sample is significantly enhanced by 12-fold at excitation of 980 nm. While further increasing the Yb3+ concentration in the shell activates new quenching pathways of Er3+ → Yb3+ → quencher from the core to the shell. Similar quenching mechanisms are also observed at excitation of 1550 nm. These energy transfer processes and luminescence mechanisms are verified in the fluorescence decay measurements. Furthermore, coating the core sample with an active shell doped by 10% Yb3+ enhances the thermal sensitivity by 30%, holding a high and stable sensitivity more than 50 × 10−4 K−1 in a broad temperature range of 423-573 K at 980 nm excitation. In addition, at the much safer excitation wavelength of 1550 nm, this sample achieved the maximum sensitivity of 45 × 10−4 K−1 at 503 K. Our work contributes a feasible and versatile way to promote the luminescence and thermal sensing properties of Ln3+-based materials, combining with the nontoxic oxysulfide host, indicating their potential applications as safe fluorescent and temperature nano-probes in bio-field.  相似文献   

11.
《Ceramics International》2019,45(15):18640-18647
The present study elaborates the bioactive and optical features of Yb3+/Tb3+ co-doped bio-active glass. Three different combinations with assorted elemental concentrations were investigated. The amorphous nature of bioglass devoid of crystalline phases until 700 °C has been confirmed through XRD analysis. The results from Raman and FT-IR accomplished the presence of Si–O–Si broad vibrational modes typical of amorphous glass and further the characteristic PO4 vibrations were also confirmed. The up-conversion luminescence studies revealed the typical Tb3+ emission excited at 976 nm. The mechanism that involved in the up-conversion and energy transfer emission phenomena were discussed. Morphological features of SBF immersed specimen affirm the formation of apatite layer by the spherical spongy agglomerates observed over the surface.  相似文献   

12.
In this paper, the Yb3+/Er3+ co-doped parent glass (PG) with composition (in mol%) of 30P2O5-10B2O3-38SrO-22K2O and transparent glass-ceramics (GCs) containing hexagonal Sr10(PO4)6O nanocrystals (NCs) were synthesized for the first time by melt-quenching method and subsequent heating treatment in air. Under 980 nm laser prompting, the GCs samples showed intense red and green up-conversion emissions compared to those characteristics for the PG sample. The emission intensities varied with Er3+ concentration and heat treatment conditions. Furthermore, in Yb3+/Er3+ co-doped GCs specimens, the optical thermometry was researched by means of fluorescence intensity ratio (FIR) of 4S3/2 and 2H11/2 levels. The GC sample heated at 620°C for 5 hours possessed a high relative temperature sensitivity (Sr) of 0.769% K−1 at 303 K and the maximal absolute temperature sensitivity (Sa) of 5.951 × 10−3 K−1 at 663 K, respectively. It is expected that the as-fabricated GC materials with Sr10(PO4)6O NCs are promising efficient up-conversion materials for optical temperature sensor.  相似文献   

13.
Tb3+/Yb3+ co-doped Y2O3 transparent ceramics were fabricated by vacuum sintering of the pellets (prepared from nanopowders by uniaxial pressing) at 1750 °C for 5 h. Zr4+ and La3+ ions were incorporated in Tb3+/Yb3+ co-doped Y2O3 nanoparticle to reduce the formation of pores which limits the transparency of ceramic. An optical transmittance of ∼80% was achieved in ∼450 to 2000 nm range for 1 mm thick pellet which is very close to the theoretical value by taking account of Fresnel’s correction. High intensity luminescence peak at 543 nm (green) was observed in these transparent ceramics under 976 and 929 nm excitations due to Yb–Tb energy transfer upconversion.  相似文献   

14.
《Ceramics International》2016,42(13):14710-14715
Usually, Er3+ doping concentration effect on the temperature sensing properties of Er3+ containing materials is ignored. In this work, we demonstrated the influence of Er3+ concentration and excitation path on the spectral and temperature sensing properties in Er3+, Yb3+ co-doped NaGdTiO4 system. The NaGdTiO4: Er3+/Yb3+ phosphors were prepared by a high temperature solid state reaction method. Different spectral patterns for down- and up-conversion processes were observed and ascribed to the different excitation and population routes. The concentration quenching behaviors for down- and up-conversion processes were explained via cross relaxations between Er3+ ions. Most importantly, the Er3+ concentration dependent optical temperature sensing performance was observed and experimentally explained as a fact that the optical transition rate of Er3+ in different samples was changed with various Er3+ doping concentration.  相似文献   

15.
《Ceramics International》2023,49(20):32850-32859
In this work, the glass network has been tailored by introducing the modifier WO3 when a Ho3+/Yb3+ co-doped bismuth-tellurite glass composition was designed. The physical, absorption, emission, structure, and gain characteristics of the glasses with the different contents of WO3 were investigated comprehensively based on various tests and analytical methods such as absorption spectra, fluorescence spectra, Raman spectra, and J-O theory. The results show that both the optical band gap and the bridge oxygen content are enhanced remarkably while the substitution of TeO2 by WO3, accelerating the transition from [TeO3] to [TeO4] units. Simultaneously, the value of Ω6 reached the maximum of 2.26×10-20 cm2 when the WO3 is equal to 10 mol%, indicating that the Stark splitting of Ho3+: 5I7 energy level is the weakest. The optimal FWHM and the gain coefficient are 143.3 nm and 2.22 cm-1, respectively. Furthermore, a blue shift of the central wavelength in absorption and emission peaks can be observed at the 2 μm band. As mentioned above, the bismuth-tellurite glass prepared is an ideal gain material that can realize a wider spectra span.  相似文献   

16.
Upconversion (UC) luminescence modulation is quite important in controlling and processing light for active components of light sources, photoswitches, optical memories, and optical sensing devices. In this work, we reported one kind of novel phosphor, Ho3+/Yb3+-doped SrBi4Ti4O15 ceramics, which displayed both strong UC luminescence and obvious photochromic (PC) reaction. The UC luminescence, PC effect, and the modulation of UC performance based on PC behavior were investigated in detail. By alternating visible light irradiation and thermal stimulus, the UC luminescence could be reversibly regulated. Meanwhile, the modulation was unveiled to tightly rely on the irradiation time and thermal treatment processes. Excellent reproducibility was also achieved. In addition, as an alternative method to thermal treatment, the manipulation of luminescence by electric field was also explored. Finally, the mechanism related to the UC luminescence manipulation was illustrated. The results indicate that these samples could be potentially utilized in optical data storage and anti-counterfeiting security fields.  相似文献   

17.
An interface-controlled reaction in normal microemulsions (water/ethanol/sodium oleate/oleic acid/n-hexane) was designed to prepare NaYF4:Yb3+, Er3+ upconversion nanoparticles. The phase diagram of the system was first studied to obtain the appropriate oil-in-water microemulsions. Transmission electron microscopy and X-ray powder diffractometer measurements revealed that the as-prepared nanoparticles were spherical, monodisperse with a uniform size of 20 nm, and of cubic phase with good crystallinity. Furthermore, these nanoparticles have good dispersibility in nonpolar organic solvents and exhibit visible upconversion luminescence of orange color under continuous excitation at 980 nm. Then, a thermal treatment for the products was found to enhance the luminescence intensity. In addition, because of its inherent merit in high yielding and being economical, this synthetic method could be utilized for preparation of the UCNPs on a large scale.  相似文献   

18.
《Ceramics International》2019,45(16):19730-19736
Hexagonal Yb3+/Er3+:NaGdF4 nanocrystals codoped with Sn2+ ions were prepared via a modulated solvothermal method. Upon introducing 25mol% Sn2+ ions into the host lattice by substituting Gd3+ ions, a portion of Yb3+/Er3+:NaGdF4 nanocrystals was converted into nanorods. Meanwhile, the upconversion (UC) luminescence intensity of 542 nm and 652 nm were intensified by 24 and 33 times respectively, when compared with samples without Sn2+ ions doping. The effect of Sn2+ ions doping content on the morphology and UC emission performances of Yb3+/Er3+:NaGdF4 nanocrystals were discussed in detail. The enhancement of UC luminescence intensity could be attributed to the growth of UC nanocrystals and the low crystal local symmetry around Yb3+/Er3+ ion pairs. This study may be beneficial for fabricating high-performance UC materials and realizing their practical applications.  相似文献   

19.
Self-monitored photo-thermal therapy (PTT) still faces huge challenge in cancer treatment, which aims to realize the real-time temperature reading during the course of optical heating. Exploiting new-type photo-thermal therapeutic agent (PTA) with thermometric function is considered to be one of effective methods to fulfill self-monitored PTT. In this work, spindle-like zircon-tetragonal (z-t) phase BiVO4:Yb3+/Er3+ up-conversion (UC) nano-particles as self-monitored PTAs were prepared through the combination of co-precipitation and hydrothermal method. Under 980 nm laser diode excitation, real-time thermometry was accomplished by monitoring thermo-responsive emission intensity ratio of Er3+ (2H11/2/4S3/2 → 4I15/2) transitions. Meanwhile, the photo-thermal conversion effect associated with UC process was trigged via the non-radiative transition channels. Considering the balance between UC emission intensity and heat generation, the optimal sample composition was determined as BiVO4:20%Yb3+/3%Er3+. Their maximum absolute sensitivity (Sa) reached 0.0125 K-1 at 460 K as the thermometer and the ability of photo-thermal conversion up to 3.32 K cm2/W as PTAs. Their potential applications in controlled subcutaneous photo-thermal treatment were estimated through ex vivo experiments. Results provided a new choice for nano-materials to realize real-time temperature feedback in the single host material (z-t BiVO4) during the course of PTT.  相似文献   

20.
For the development of optical temperature sensor, a series of GdTaO4 phosphors with various Er3+-doping concentrations (0, 1, 5, 10, 25, 35, 50 mol%) were synthesized by a solid-state reaction method. The monoclinic crystalline structure of the prepared samples was determined by X-ray diffraction (XRD). Under excitations of 980 and 1550 nm lasers, the multi-photon-excited green and red upconversion (UC) luminescence emissions of Er3+ were studied, and the critical quenching concentration of Er3+-doped GdTaO4 phosphor was derived to be 25 mol%. By changing the pump power of laser, it was found that the two-photon and three-photon population processes happened for the UC emissions of Er3+-doped GdTaO4 phosphors excited by 980 and 1550 nm lasers, respectively. Furthermore, based on the change of thermo-responsive green UC luminescence intensity corresponding to the 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions of Er3+ with temperature, the optical temperature sensing properties of Er3+-doped GdTaO4 phosphor were investigated under excitations of 980 and 1550 nm lasers by using the fluorescence intensity ratio (FIR) technique. It was obtained that the maximum absolute sensitivity (SA) and relative sensitivity (SR) of Er3+-doped GdTaO4 phosphors are as high as 0.0041 K−1 at 475 K and 0.0112 K−1 at 293 K, respectively. These significant results suggest that the Er3+-doped GdTaO4 phosphors are a promising candidate for optical temperature sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号