首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicon carbide (SiC) ceramics have been fabricated by pressureless liquid phase sintering with Al2O3 and rare-earth oxides (Lu2O3, Er2O3 and CeO2) as sintering additives. The effect was investigated of the different types of rare earth oxides on the mechanical property, thermal conductivity and microstructure of pressureless liquid phase sintered SiC ceramics. The room temperature mechanical properties of the ceramics were affected by the type of rare earth oxides. The high temperature performances of the ceramics were influenced by the triple junction grain boundary phases. With well crystallized triple junction grain boundary phase, the SiC ceramic with Al2O3–Lu2O3 as sintering additive showed good high temperature (1300 °C) performance. With clean SiC grain boundary, the SiC ceramic with Al2O3–CeO2 as sintering additive showed good room temperature thermal conductivity. By using appropriate rare earth oxide, targeted tailoring of the demanding properties of pressureless liquid phase sintered SiC ceramics can be achieved.  相似文献   

2.
Reaction-bonded SiC (RBSC) porous ceramics were fabricated at 1450?°C in air by incorporating CaO using ZrO2 as sintering aids, activated carbon as pore-forming agent, and mullite fibers as reinforcing agent. The effects of CaO content on the properties of the porous RBSC ceramics were studied. Corrosion behaviors of the prepared RBSC porous ceramics in different environments were also investigated. The optimal open porosity, bending strength, average pore size and gas permeability of the ceramics with 0.5% CaO were 40%, 22.5?MPa, 42.9?µm, and 2100?m3/m2 h?kPa, respectively. A well-developed neck reaction-bonded by calcium zirconium silicate (Ca3ZrSi2O9) was identified. The porous RBSC ceramics exhibited excellent corrosion resistance in acid and basic solutions. The anti-oxidation temperature of the porous RBSC ceramics could reach 1200?°C in air. The RBSC ceramics maintained the bending strength of 17.5?MPa after 60 cold-hot cycles in air (0–800?°C). The porous RBSC ceramics also exhibited relatively good corrosion resistance in molten salts (NaCl, Na2SO4 and CaCl2). Melten NaOH can aggravate the reaction by breaking the SiO2 layers on the SiC surface. Overall, these findings offer significant insights into expanding the applications porous RBSC ceramics incorporated with CaO.  相似文献   

3.
Porous cordierite/SiC ceramics were fabricated by in situ reaction bonding using α‐SiC, α‐Al2O3, and MgO powders as the starting materials. During sintering, part SiC is oxidized to SiO2 and then the latter reacts with Al2O3 and MgO to form cordierite. As a result, porous cordierite/SiC ceramics were obtained, and the ceramics are strengthened by the residual SiC. Due to the large volume expansion introduced by the oxidation of SiC, the ceramics exhibit small sintering‐induced dimension variations. In addition, a fine‐grained microstructure and good thermal and mechanical properties were obtained for the porous cordierite/SiC ceramics.  相似文献   

4.
The intergranular film of self-reinforced SiC ceramics prepared by hot pressing and further annealing with SiO2–Y2O3 and SiO2–Al2O3 as sintering additives was observed by high-resolution transmission electron microscopy. The film thickness of SiC ceramics with SiO2–Y2O3 was 1.2 nm whereas that of ceramics with SiO2–Al2O3 was 0.8 nm. Based on the refined continuum model, an explanation on the variation of thickness with sintering additives is given. It seems that the behavior of intergranular glassy film of SiC ceramics is akin to that of Si3N4 ceramics.  相似文献   

5.
In this study, dense SiC ceramics were fabricated at 1650?1750 °C for 10?60 min by spark plasma sintering (SPS) using 3?10 wt.% Al2O3-Y2O3 as sintering additives. Effects of sintering temperature, sintering additive content and holding time on microstructure as well as correlations between microstructure and thermal conductivity were investigated. An increase in the sintering temperature promotes grain growth. Extending holding time has little influence on grain size but results in formation of continuous network of sintering additive, which increases interfacial thermal resistance and thus decreases thermal conductivity. For SiC ceramics composed of continuous SiC matrix and discrete secondary phase (yttrium aluminum garnet, YAG), an increase in the sintering additive content results in smaller grain size and lower thermal conductivity. The lower thermal conductivity of the SiC ceramic with higher sintering additive content is mainly due to the smaller grain size rather than the low intrinsic thermal conductivity of YAG.  相似文献   

6.
《Ceramics International》2020,46(17):26888-26894
The mechanical properties of porous ceramics prepared by poly-hollow microspheres (PHMs) is usually low because of the weak bonding between different ceramic PHMs. In this paper, CaSiO3 were coated to the surface of Al2O3 PHMs through co-precipitation method as sintering additive to improve the properties of Al2O3 poly-hollow microsphere ceramics (Al2O3 PHM ceramics). The influence of different amount of CaCl2 solution on properties of the Al2O3 PHM ceramics such as phase composition, microstructure, porosity and mechanical properties were studied. The porosity of the Al2O3 PHM ceramics decreased from 77.03% to 68.16% with the increase of CaCl2 solution amount, while compressive strength increased 29 times from 0.29 MPa to 8.39 MPa. The addition of the CaSiO3 could decrease the sintering temperature of Al2O3 PHM ceramics and significantly improve the mechanical properties of Al2O3 PHM ceramics, which is beneficial for preparing highly porous Al2O3 PHM ceramics with high mechanical properties and complex shapes.  相似文献   

7.
The combination of Al2O3 and CeO2 was testified as suitable sintering additive for liquid phase sintering of SiC ceramics, which has lower sintering temperature than that sintered with Al2O3 and Y2O3 as sintering aids. However, the mechanical properties including flexural strength, Vickers’ hardness and fracture toughness of this system were similar to those of the samples sintered with Al2O3 and Y2O3 as sintering aids. The good wettability of the eutectic liquid phase on SiC plate, the high solubility of SiC particles into the liquid phase and the penetration of the liquid phase along the SiC–SiC grain boundaries all confirmed the suitability of the combination of Al2O3 and CeO2 as liquid phase sintering additive for SiC.  相似文献   

8.
以碳化硅(SiC)微粉为骨料,Al2O3-Y2O3为烧结助剂,氯化钙(CaCl2)作为造孔剂,采用无压液相烧结制备了表面微孔SiC陶瓷,分析了不同CaCl2含量对SiC陶瓷的烧结性能、显微结构和摩擦性能的影响。结果表明:加CaCl2会降低SiC陶瓷的体积密度、硬度和抗弯强度;可以有效地细化SiC陶瓷晶粒;能在SiC陶瓷...  相似文献   

9.
In this study, we investigated the electrical and thermal properties of SiC ceramics with 2 vol% equimolar Y2O3–RE2O3 (RE = Sm, Gd, Lu) additives. The three SiC ceramics with 2 vol% equimolar Y2O3–RE2O3 additives showed electrical conductivities on the order of ~103 (Ω·m)?1, which is one order of magnitude higher than that of the SiC ceramics sintered with 2 vol% Y2O3 only. The increase in electrical conductivity is attributed to the growth of heavily nitrogen‐doped SiC grains during sintering and the confinement of oxide additives in the junction area. The thermal conductivities of the SiC ceramics were in the 176–198 W·(m·K)?1 range at room temperature. The new additive systems, equimolar Y2O3–RE2O3, are beneficial for achieving both high electrical conductivity and high thermal conductivity in SiC ceramics.  相似文献   

10.
In this paper, silicon carbide ceramics were prepared by aqueous gelcasting and pressureless sintering using Al2O3 and Y2O3 as the sintering additives. In order to develop well dispersed SiC slurries in the presence of sintering additives, the Al2O3 and Y2O3 powder was treated in the citric acid solution in advance. Zeta potential measurement showed that the isoelectric point (IEP) of Al2O3 and Y2O3 powder moved toward low pH region after treatment. Rheological measurement confirmed that the addition of as-treated powder showed very limited influence on the slurry properties as compared to that of untreated powder. SiC slurries with solid content of 54 vol% and enough fluidity can be developed. After gelcasting and pressureless sintering, SiC ceramics with nearly full density, fine grained and homogeneous microstructure can be obtained. Results showed that the surface treatment of Al2O3 and Y2O3 with citric acid is effective for the gelcasting process of SiC.  相似文献   

11.
An in situ reaction bonding technique was developed to fabricate mullite-bonded porous silicon carbide (SiC) ceramics in air from SiC and α-Al2O3, using graphite as the pore-former. Graphite is burned out to produce pores and the surface of SiC is oxidized to SiO2 at high temperature. With further increasing the temperature, the amorphous SiO2 converts into cristobalite and reacts with α-Al2O3 to form mullite (3Al2O3·2SiO2). SiC particles are bonded by the mullite and oxidation-derived SiO2 to obtain porous SiC ceramics. The reaction bonding behavior, open porosity, pore size distribution and mechanical strength of porous SiC ceramics were investigated as a function of the sintering temperature, forming pressure and graphite content. In addition, the phase composition and microstructure were also studied.  相似文献   

12.
The effect of sintering temperature on the mechanical and thermal properties of SiC ceramics sintered with Al2O3–Y2O3–CaO without applied pressure was investigated. SiC ceramics containing A2O3–Y2O3–CaO as sintering additives can be sintered to >97% theoretical density at temperatures between 1750°C and 1900°C without applied pressure. A toughened microstructure, consisting of relatively large elongated grains and relatively small equiaxed grains, has been obtained when sintered at temperatures as low as 1800°C for 2 h in an argon atmosphere without applied pressure. The achievement of toughened microstructures under such mild conditions is the result of the additive composition. The thermal conductivity of the SiC ceramics increased with increasing sintering temperature because of the decrease in the lattice oxygen content of the SiC grains. Typical sintered density, flexural strength, fracture toughness, hardness, and thermal conductivity of the 1850°C‐sintered SiC, which consisted of 62.2% 4H, 35.7% 6H, and 2.1% 3C, were 99.0%, 628 MPa, 5.3 MPa·m1/2, 29.1 GPa, and 80 W·(m·K)?1, respectively.  相似文献   

13.
Nitrogen (N)-doped conductive silicon carbide (SiC) of various electrical resistivity grades can satisfy diverse requirements in engineering applications. To understand the mechanisms that determine the electrical resistivity of N-doped conductive SiC ceramics during the fast spark plasma sintering (SPS) process, SiC ceramics were synthesized using SPS in an N2 atmosphere with SiC powder and traditional Al2O3–Y2O3 additive as raw materials at a sintering temperature of 1850–2000°C for 1–10 min. The electrical resistivity was successfully varied over a wide range of 10−3–101 Ω cm by modifying the sintering conditions. The SPS-SiC ceramics consisted of mainly Y–Al–Si–O–C–N glass phase and N-doped SiC. The Y–Al–Si–O–C–N glass phase decomposed to an Si-rich phase and N-doped YxSiyCz at 2000°C. The Vickers hardness, elastic modulus, and fracture toughness of the SPS-SiC ceramics varied within the ranges of 14.35–25.12 GPa, 310.97–400.12 GPa, and 2.46–5.39 MPa m1/2, respectively. The electrical resistivity of the obtained SPS-SiC ceramics was primarily determined by their carrier mobility.  相似文献   

14.
Properties such as high hardness, low density, and high elastic modulus have made SiC ceramics proper choices for a variety of industrial applications. However, disadvantages such as low sinterability, and low fracture toughness have limited the fabrication of these ceramics. Past researches show that the use of Al2O3-Y2O3 additives play an important role in improving the sinterability and the properties of the composites. The use of oxide, carbide, nitride and boride additives results in improved sinterability, physical and mechanical properties. The investigations show that the microstructure, porosities, amount of additives, reaction of additives with the matrix, grain size and, finally, the sintering temperature are the most important factors affecting the properties of SiC ceramics. In this paper, the effect of using various additives, the sintering temperature and the annealing heat treatment on sinterability, microstructure and properties of the SiC matrix composites fabricated by pressureless sintering method have been investigated.  相似文献   

15.
The influence of Y2O3 addition on electrical properties of β-SiC ceramics has been investigated. Polycrystalline SiC samples obtained by hot-pressing SiC–Y2O3 powder mixtures in nitrogen (N) atmosphere contain Y2O3 clusters segregated between SiC grains. Y2O3 forms a Y–Si-oxycarbonitride phase during sintering by reacting with SiO2 and SiC and by dissolution of N from the atmosphere; this induces N doping into the SiC grains during the process of grain growth. The SiC samples exhibit an electrical resistivity of ~10?3 Ω cm and a carrier density of ~1020 cm?3, which are ascribed to donor states derived from N impurities. The increase in defect density with increasing Y2O3 content is likely to be a main limiting factor of the electrical conductivity of SiC ceramics.  相似文献   

16.
SiC-5 wt.% ZrB2 composite ceramics with 10 wt.% Al2O3 and Y2O3 as sintering aids were prepared by presureless liquid-phase sintering at temperature ranging from 1850 to 1950 °C. The effect of sintering temperature on phase composition, sintering behavior, microstructure and mechanical properties of SiC/ZrB2 ceramic was investigated. Main phases of SiC/ZrB2 composite ceramics are all 6H-SiC, 4H-SiC, ZrB2 and YAG. The grain size, densification and mechanical properties of the composite ceramic all increase with the increase of sintering temperatures. The values of flexural strength, hardness and fracture toughness were 565.70 MPa, 19.94 GPa and 6.68 MPa m1/2 at 1950 °C, respectively. The addition of ZrB2 proves to enhance the properties of SiC ceramic by crack deflection and bridging.  相似文献   

17.
The electrical properties of β‐SiC ceramics were found to be adjustable through appropriate AlN–Y2O3 codoping. Polycrystalline β‐SiC specimens were obtained by hot pressing silicon carbide (SiC) powder mixtures containing AlN and Y2O3 as sintering additives in a nitrogen atmosphere. The electrical resistivity of the SiC specimens, which exhibited n‐type character, increased with AlN doping and decreased with Y2O3 doping. The increase in resistivity is attributed to Al‐derived acceptors trapping carriers excited from the N‐derived donors. The results suggest that the electrical resistivity of the β‐SiC ceramics may be varied in the 104–10?3 Ω·cm range by manipulating the compensation of the two impurity states. The photoluminescence (PL) spectrum of the specimens was found to evolve with the addition of dopants. The presence of N‐donor and Al‐acceptor states within the band gap of 3C–SiC could be identified by analyzing the PL data.  相似文献   

18.
Al2O3-SiC composite ceramics were prepared by pressureless sintering with and without the addition of MgO, TiO2 and Y2O3 as sintering aids. The effects of these compositional variables on final density and hardness were investigated. In the present article at first α-Al2O3 and β-SiC nano powders have been synthesized by sol-gel method separately by using AlCl3, TEOS and saccharose as precursors. Pressureless sintering was carried out in nitrogen atmosphere at 1600 °C and 1630 °C. The addition of 5 vol.% SiC to Al2O3 hindered densification. In contrast, the addition of nano MgO and nano TiO2 to Al2O3-5 vol.% SiC composites improved densification but Y2O3 did not have positive effect on sintering. Maximum density (97%) was achieved at 1630 °C. Vickers hardness was 17.7 GPa after sintering at 1630 °C. SEM revealed that the SiC particles were well distributed throughout the composite microstructures. The precursors and the resultant powders were characterized by XRD, STA and SEM.  相似文献   

19.
This paper reports the joining of liquid-phase sintered SiC ceramics using a thin SiC tape with the same composition as base SiC material. The base SiC ceramics were fabricated by hot pressing of submicron SiC powders with 4 wt% Al2O3–Y2O3–MgO additives. The base SiC ceramics were joined by hot-pressing at 1800-1900°C under a pressure of 10 or 20 MPa in an argon atmosphere. The effects of sintering temperature and pressure were examined carefully in terms of microstructure and strength of the joined samples. The flexural strength of the SiC ceramic which was joined at 1850°C under 20 MPa, was 343 ± 53 MPa, higher than the SiC material (289 ± 53 MPa). The joined SiC ceramics showed no residual stress built up near the joining layer, which was evidenced by indentation cracks with almost the same lengths in four directions.  相似文献   

20.
By utilising soaked millet as a shrinkable pore-forming agent, porous silicon carbide-alumina (SiC-Al2O3) ceramics were prepared via gelcasting. The fabrication of SiC-Al2O3 ceramics based on oxidised and unoxidised coarse-grained SiC was also studied. The water swelling, drying shrinkage, and low-temperature carbonisation of the millet were investigated. We found that the shrinkage of the soaked millet was greater than that of gel body during drying, which left large gaps that prevented shrinkage stresses from destroying the gel body. Low-temperature carbonisation of the millet should be performed slowly at 220–240?°C because its expansion rate increases to 45% at 250?°C, resulting in the cracking of samples. At a constant sintering temperature, the flexural strength of the SiC-Al2O3 ceramics prepared with SiC powders oxidised at 1000?°C was the highest, indicating that oxidised powders can successfully decrease the required sintering temperature and improve the flexural strength of composite ceramics. Based on our optimised process, porous SiC-Al2O3 ceramics were sintered at 1500?°C for 2?h. When their skeletons were fully developed, their pore sizes were in the range of 1.5–2?mm. Their porosity and flexural strength were 60.2–65.1% and 8.3–10.5?MPa, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号