首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 12.6Å calcium silicate hydrate was synthesized by reacting amorphous silica and calcium oxide in the presence of a large excess of NaOH at 80–98°C. This new synthetic phase was characterized by microscopic and spectroscopic techniques. These techniques showed that the above phase belongs to the tobermorite family. The 12.6Å phase transformed to 10.6Å phase by dehydration at room temperature and further dehydration at 100°C resulted in a 9.3Å phase. The 12.6Å phase exhibited a cation exchange capacity of 130 meq/100g but showed little or no Cs selectivity.  相似文献   

2.
《Ceramics International》2022,48(20):29882-29891
A simple strategy for preparing MgO–Al2O3–CaO-based porous ceramics (MACPC) with high strength and ultralow thermal conductivity has been proposed in this work based on the raw material of phosphorus tailings. The effects of phosphorus tailings content, carbon black addition and heat treatment temperature on the properties of MACPC were studied, and their pore-forming mechanism during sintering was revealed. The results showed that the main phase composition of MACPC was magnesia alumina spinel and calcium aluminate after sintering at 1225 °C. Furthermore, the MACPC exhibited excellent comprehensive properties when 60 wt% phosphorus tailings and 40 wt% alumina were added, whose apparent porosity was 62.8%, cold compressive strength was 14.8 MPa, and the thermal conductivity was 0.106 W/(m·K) at 800 °C. The synchronously enhanced strength and thermal insulation properties of MACPC were related to the formation of uniformly distributed micropores (<2 μm) and passages in the matrix, which originated from the decomposition of phosphorus tailings and the burnt out of carbon black during the sintering process. The preparation of MACPC with high temperature resistance and excellent mechanical and thermal insulation properties with the raw material of phosphorus tailings provided an effective method for the high-value utilization of phosphorus tailings.  相似文献   

3.
A series of vanadium–phosphorus oxides (mainly with V P ) supported on pigmentary anatase (10 m2 g-1) has been prepared using aqueous NH4VO3 and (NH4)H2PO4 solutions, with loadings up to 11.3 wt%, equivalent to about 12.7 monolayers. Characterisation by X-ray diffraction, laser Raman spectroscopy, X-ray photoelectron spectroscopy and temperature-programmed reduction suggests that the main phase present at loadings below about 10 wt% is an amorphous V–P oxide which exists chiefly as blocks of disordered material. The presence of small amounts of crystalline -VOPO4 and of V2O5 is indicated at the highest loadings, especially when and V P ratios are used. The two materials having the lowest loadings are active for methanol oxidation at 473–533 K, and show high selectivity to formaldehyde. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Steam explosion lignin phenol formaldehyde (SEL–PF) adhesives were prepared by ternary gradual copolymerization. The parameters for the phenolate of steam explosion lignin (SEL) and preparation of SEL–PF adhesives were optimized. Under the optimum phenolate conditions, the phenolic hydroxyl content of lignin increased by 130%, whilst the methoxyl content was reduced by 68%. The SEL–PF adhesives were used to prepare plywoods by hot-pressing. The pH value, viscosity, solid content, free phenol content and free formaldehyde content of SEL–PF adhesives were investigated. The bonding strengths of the plywoods glued with SEL–PF adhesives were determined. The maximum SEL replacement percentage of phenol reached 70 wt%, and the properties of adhesives and plywoods met the Chinese National Standard (GB/T 14732-2006) for first grade plywood.  相似文献   

5.
Highly dispersed and ultrafine palladium–phosphorus (Pd–P) nanoparticles (NPs) are prepared with a novel phosphorus reduction method. The structural and electronic properties of Pd–P NPs are characterized using Fourier transform infrared (FT-IR), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The electrooxidation of formic acid on Pd–P NPs are investigated by using cyclic voltammetry, chronoamperometry and CO-stripping measurements. The physical characterizations indicate the doped P element can enhance the content of Pd0 species in Pd NPs, decrease the particle size and improve the dispersion of Pd–P NPs. The electrochemical measurements show the Pd–P NPs have a better catalytic performance for formic acid electrooxidation than Pd NPs.  相似文献   

6.
7.
8.
Lithium aluminum silicate glasses of composition (wt%) 12.6Li2O–71.7SiO2–5.1Al2O3–4.9K2O–3.2B2O3–2.5P2O5 were prepared by the melt quench technique. These glasses were converted to glass–ceramics based on DTA data. X-ray diffraction (XRD) and Fourier transform infra-red spectroscopy (FTIR) were used to discern the phases evolved in the glass–ceramics. Phase morphology was studied using scanning electron microscopy (SEM). Thermal expansion coefficient (TEC) and glass transition temperature (Tg) of all samples were measured using thermo-mechanical analyzer (TMA). It was found that 3 h dwell time at crystallization temperature yielded samples with good crystallinity with a TEC of 9.461 × 10−6 °C−1. Glass–ceramic-to-metal compressive seal with SS-304 was fabricated using LAS glass–ceramic. The presence of metal housing and compressive stresses at the glass–ceramic-to-metal interface reduced average grain size and changed the overall microstructure.  相似文献   

9.
《Ceramics International》2016,42(14):15376-15382
Porous β-tricalcium phosphate (β-TCP) was successfully prepared from starfish-derived calcium carbonate (sf-bone) under several hydrothermal conditions. The sf-bone, obtained from Patiria Pectinifera by bleaching to remove organic substances, was Mg-containing calcite granules with an interconnected microporous structure of approximately 10−50 µm of pore, and was hydrothermally treated with ammonium phosphate aqueous solutions at various pHs and temperatures. The sf-bone was converted to Mg-containing β-TCP with maintaining its microporous structure by the hydrothermal treatment for 1 day or longer in (NH4)2HPO4 aqueous solution at 200 °C. This conversion was based on dissolution-reprecipitation process of Mg-containing calcite in the phosphate salt aqueous solution. Thus, conditions during the conversion, pH and temperature, affected the morphologies and crystal phases of sf-bone after the treatment depended upon both calcite dissolution and calcium phosphate-formation rates.  相似文献   

10.
Currently, a novel shrinkage-reducing polycarboxylate superplasticizer (SR-PCA) is used to control cementitious shrinkage. To clarify its mechanism when applied in cementitious materials, the influence of SR-PCA on the composition, morphology, and structure of synthetic calcium–silicate–hydrate (C–S–H), together with the interaction between SR-PCA and C–S–H at the atomic level, is investigated. For comparison, a commercial polycarboxylate superplasticizer (PCA) is also employed. The results show PCA and SR-PCA can adsorb on the C–S–H surface rather than intercalate into the layers. Compared with PCA, SR-PCA has a milder impact on C–S–H crystallinity. SR-PCA refines the pore structure of C–S–H drastically, whereas PCA loosens the structure by increasing the mesopore volume. In addition, the adsorption effect of SR-PCA on the C–S–H surface is less significant than that of PCA. At the atomic level, this less adsorption of SR-PCA is attributed to the lower adhesion energy of the C–S–H/SR-PCA interface due to the weaker Ca–O bond strength.  相似文献   

11.
The polyaniline (PANI)–poly (vinyl alcohol) (PVA) composite film doped with HCl was prepared by adopting PVA as matrix. Effects of PVA content and film drying temperature on properties of HCl–PANI–PVA composite film were studied. A comparison was made for tensile strength, elasticity, conductivity and thermal stability of PVA, HCl–PANI or HCl–PANI–PVA. PVA film presented the highest tensile strength and elasticity (150.8?MPa and 300.0%), but its conductivity was the lowest. The conductivity of HCl–PANI–PVA was the highest (1500?S?m?1), and tensile strength and elasticity of HCl–PANI–PVA were higher than those of HCl–PANI. The order of their thermal stability is PVA?>?HCl–PANI?>?HCl–PANI–PVA before 260°C, and the order of their thermal stability is HCl–PANI?>?HCl–PANI–PVA?>?PVA after 260°C. At the same time, the structure and conductive mechanism of composite materials were characterised and analysed through infrared and scanning electron microscopy (SEM).  相似文献   

12.
A novel trizine ring-based phosphorus–nitrogen flame retardant, 1,3,5-tris(3-(diphenylphosphoryl)propyl)-1,3,5-triazinane-2,4,6-trione (PN), was synthesized by the reaction of diphenylphosphine oxide and triallyl isocyanurate with triethylborane as catalyst. Chemical structure of the target compound was confirmed by Flourier transform infrared spectrum, nuclear magnetic resonances, matrix-assisted laser desorption/ionization time-of-flight mass spectrum measurements. The newly developed PN was used in the flame retardancy of o-cresol novolac epoxy/phenolic novolac hardener system. For comparison, another analogous phosphorus–silicon flame retardant, [(1,1,3,3-tetramethyl-1,3-disiloxanediyl)-di-2,1-ethanediyl]-bis(diphenylphosphine oxide) (PSi), was also applied in the same system. Experimental results revealed that PN showed superior flame retardant efficiency to that of PSi. In addition, the incorporation of flame retardants was in favor of the char formation during the thermal degradation process of epoxy thermosets. With the same flame retardant content, the char residue of epoxy thermosets with PSi was higher than that of epoxy thermosets with PN at 750 °C. Cone calorimeter results indicated that PN contributed to gas phase flame retardancy while PSi was more likely to take part in flame retardancy in the condense phase. X-ray photoelectron spectroscopy data revealed that the binding energies of phosphorus changed in different ways in PN and PSi after combustion. This implied that phosphorus exhibited different combustion behaviors when combined with nitrogen or silicon.  相似文献   

13.
Emulsion-templated porous polymeric materials are prepared by thermal thiol–ene reaction. The right choice of a non-methacrylate trivinyl monomer allows obtaining rigid monoliths with a total porosity of 80% and having the expected polyHIPE morphology.  相似文献   

14.
《Ceramics International》2022,48(21):31790-31799
Sr(Zr1-2xCexGdx)O3-0.5x (x = 0, 0.05, 0.1 and 0.15) ceramics were prepared by pressureless sintering using powders that were synthesized by solid-state reaction. The mechanical properties and calcium–magnesium–alumino–silicate (CMAS) early corrosion behaviour of the prepared ceramics were reported. The mechanical properties of rare-earth-doped SrZrO3 improved significantly. The reaction products of the Sr(Zr1-2xCexGdx)O3-0.5x ceramics after CMAS corrosion were similar: zirconia, SrAl2O4, akermanite, and anorthite. The mechanism of CMAS corrosion resistance is summarized as follows: elemental Sr easily enters the CMAS melt, because of its high diffusivity, and promotes crystallization. Rare-earth elements can prevent melt infiltration because of their low diffusivity.  相似文献   

15.
The chemical reactions involved in the corrosion of MgOCaZrO3–calcium silicate materials by cement clinker were studied using a hot-stage microscope up to 1600 °C. The phases formed at 1500 °C were characterized by RLOM and SEM–EDS of the crystalline phases conducted near the reaction front and on unreacted refractory area.The general corrosion mechanism of attack on MgOCaZrO3–calcium silicate materials involves a mechanism of matter diffusion of the liquid clinker phase through the grain boundaries and pores into the refractory substrate. The liquid phases in the clinker mainly enriched in calcium, iron and aluminium are rapidly diffused and preferentially react with magnesium spinel, calcium zirconate and magnesia, which are the major constituents in the refractory substrates. The dissolution of the CaZrO3 refractory phase produces the enrichment with zirconium of the liquid phase increasing its viscosity and hindering the liquid phase diffusion.  相似文献   

16.
In the current study, the development of the silicate structure of synthetic calcium silicate hydrates with different calcium contents was followed by in-situ infrared (IR) spectroscopy and correlated to the in-situ phase development evaluated by X-ray diffraction (XRD). A baseline correction method initially developed for X-ray diffractograms was successfully adapted for the complex background of the fingerprint region in in-situ IR, which significantly contributed to signal quality and reproducibility. The development of separate silicate infrared bands could be monitored over 24 h of reaction. These bands could be assigned to oligomeric and dimeric species based on their time and stoichiometry-dependent development. It was clearly shown that the main peak of the dimeric silicate species was overlooked in the literature. The correlation of time-dependent events to in-situ XRD revealed that changes in the unit cell of calcium silicate hydrate are related to silicate polymerization. The results were compared to 29Si-MAS-NMR, which highlighted the benefits of in-situ IR spectroscopy.  相似文献   

17.
Conventional amphoteric and porous materials are often synthetic and polymer based; this tends to raise environmental concerns because of their poor biodegradability. To address this issue, novel natural-polymer- or amphoteric-modified cellulose and MOt (ACeOMt) composite beads with a typical mesoporous structure were developed in this study. These green-based porous beads, consisting of regenerated bagasse cellulose and oxalic acid modified montmorillonite (OMt), were successfully prepared by a facile coagulation method with fine calcium carbonate as a pore-forming agent. The beads with the best sphericity were obtained at a 1:1 weight ratio of cellulose to OMt. Scanning electron microscopy observation showed that ACeOMt possessed a smooth surface with abundant macropores. X-ray diffraction and thermogravimetric analysis characterizations demonstrated the success of the modification of montmorillonite and cellulose. The results of Brunauer–Emmett–Teller analysis indicate the presence of a typical mesoporous structure in the composite with a relatively high specific surface area. The resulting ACeOMt are expected to be biodegradable, nonhazardous, and applicable for various uses, including adsorption, chromatography, and soil remediation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47941.  相似文献   

18.
In this paper, we first reported that porous SiC–Al2O3 ceramics were prepared from solid waste coal ash, activated carbon, and commercial SiC powder by a carbothermal reduction reaction (CRR) method under Ar atmosphere. The effects of addition amounts of SiC (0, 10, 15, and 20 wt%) on the postsintering properties of as-prepared porous SiC–Al2O3 ceramics, such as phase composition, microstructure, apparent porosity, bulk density, pore size distribution, compressive strength, thermal shock resistance, and thermal diffusivity have been investigated. It was found that the final products are β-SiC and α-Al2O3. Meanwhile, the SEM shows the pores distribute uniformly and the body gradually contacts closely in the porous SiC–Al2O3 ceramics. The properties of as-prepared porous SiC–Al2O3 ceramics were found to be remarkably improved by adding proper amounts of SiC (10, 15, and 20 wt%). However, further increasing the amount of SiC leads to a decrease in thermal shock resistance and mechanical properties. Porous SiC–Al2O3 ceramics doped with 10 wt% SiC and sintered at 1600°C for 5 hours with the median pore diameter of 4.24 μm, room-temperature compressive strength of 21.70 MPa, apparent porosity of 48%, and thermal diffusivity of 0.0194 cm2/s were successfully obtained.  相似文献   

19.
《Powder Technology》1986,47(3):233-238
A series of porous silicates are prepared by destabilization (precipitation) of an alkaline silicate with a polyvalent metal salt in aqueous medium. The experimental conditions are optimised in such a manner as to obtain almost all particles with precise control on their size. On an average 98 – 99% of the product is in the particle size range −300 +350 BSS mesh. For the source of silica and alumina, several starting materials of both chemical and natural sources have been used in the synthesis. The porous silicates thus developed are exhaustively characterised for bulk density, oil absorption, specific gravity, pore volume, surface area and particle size distribution. The results obtained show that the surface properties of porous silicates vary over a wide range, although the chemical composition of the products remains practically the same. It is discussed that mode of preparation, the reactants employed and the key process variables ultimately decide the surface properties and the end-use applications.  相似文献   

20.
Cascade Blue™ (CB) dye at a concentration as high as 0.227 M was encapsulated within nano-sized porous silicate shells, and its relative fluorescence yield determined over the pH range of 1.8–12.3, using 380 nm as the excitation wavelength. The results were compared with those obtained in aqueous solution using similar pH and total dye concentration. Near neutral pH, the relative fluorescence yields of CB inside the shells exhibited little fluorescence quenching, even though a high concentration of the dye was trapped inside the particles, while the peak wavelength of fluorescence was shifted from 420 nm in solution to 430 nm in shells. Both in shells and solution, the relative fluorescence intensity decreased as the solution pH was raised from 2 to 4, and in shells it nearly disappeared at about pH 3–4. As the pH was further increased, the red shift of fluorescence peak in the shell-trapped dyes was evident at pH 5 and its fluorescence intensity regained equal to that in acid. In the neutral pH range, the fluorescence intensity of CB in the shells was similar to that of the equivalent total concentration of the CB in solution. In solution, a similar red shift of the fluorescence maximum of CB to 430 nm was observed only above pH 9. These observations suggest that the fluorescence intensities of dyes trapped inside nano-sized porous silicate shells can be equal to or higher than that observed in solution under comparable conditions, leading to several hundreds times more fluorescent intensity when it is measured per single shell rather than per unit fluorophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号