首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(12):13783-13789
Lead-free (1−x)(0.0852Bi0.5Na0.5TiO3–0.12Bi0.5K0.5TiO3–0.028BaTiO3)–xCaZrO3 piezoelectric ceramics (BNT−BKT−BT−xCZ, x=0, 0.01, 0.02, 0.03, 0.04 and 0.05) were prepared by using a conventional solid-state reaction method. The effects of CZ-doping on the structural, dielectric, ferroelectric and piezoelectric properties of the BNT−BKT−BT−xCZ system were systematically investigated. The polarization and strain behaviors indicated that the long-range ferroelectric order in the unmodified BNT−BKT−BT ceramics was disrupted by the increase of CZ-doping content, and correspondingly the depolarization temperature (Td) shifted down from 109 °C to below room temperature. When x>0.03, accompanied with the drastic decrease in the remnant polarization (Pr) and piezoelectric coefficient (d33), the electric-field-induced strain was enhanced significantly. A large unipolar strain of 0.35% under an applied electric field of 70 kV/cm (Smax/Emax=500 pm/V) was obtained in the BNT−BKT−BT−0.04CZ ceramics at room temperature, which was attributed to the reversible electric-field-induced phase transition between the relaxor and ferroelectric phases.  相似文献   

2.
We have investigated the Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 (NBT–KBT) system, with its complex perovskite structure, as a promising material for piezoelectric applications. The NBT–KBT samples were synthesized using a solid-state reaction method and characterized with XRD and SEM. Room-temperature XRD showed a gradual change in the crystal structure from tetragonal in the KBT to rhombohedral in the NBT, with the presence of an intermediate morphotropic region in the samples with a compositional fraction x between 0.17 and 0.25. The fitted perovskite lattice parameters confirmed an increase in the size of the crystal lattice from NBT towards KBT, which coincides with an increase in the ionic radii. Electrical measurements on the samples showed that the maximum values of the dielectric constant, the remanent polarization and the piezoelectric coefficient are reached at the morphotropic phase boundary (MPB) (? = 1140 at 1 MHz; Pr = 40 μC/cm2; d33 = 134 pC/N).  相似文献   

3.
《Ceramics International》2016,42(13):14557-14564
A series of NBT-KBT lead-free crystals with dimensions of Φ 35×10 mm were successfully grown by the TSSG method. The as-grown crystals possess rhombohedral perovskite structure at room temperature. The curves ε(T) for all crystals show two abnormal dielectric peaks. The depolarization temperatures Td derived from the first peak of curves tan δ(T) vary with the KBT content, which are 130, 150, 140, and 115 °C respectively, for (100−x)NBT−xKBT (x=5, 8, 12, 15) crystals, being well consistent with the Td obtained from the temperature dependence of kt. A notable thermal hysteresis, ΔT≈35 °C, for ferroelectric-antiferroelectric phase transition was also disclosed for 92NBT-8KBT crystal. The investigation of orientation dependence for electrical properties disclosed the dielectric parameters show weak anisotropy. The piezoelectric constants (d33) are 147, 175, 205, 238 pC/N and the values of kt are 38%, 52%, 52%, 54%, respectively for (100−x)NBT−xKBT (x=5, 8, 12, 15) crystals.  相似文献   

4.
《Ceramics International》2017,43(10):7653-7659
Lead-free (1−x)(0.75Bi0.5Na0.5TiO3–0.25Bi0.5K0.5TiO3)–xBiAlO3 (BNT–BKT–100xBA, x=0–0.10) ceramics were prepared by two-step sintering method and their phase structure, micro morphology and electrical properties were systematically investigated. X-ray diffraction analysis indicates a pure perovskite phase for x≤0.06 as well as a structural evolution from a tetragonal toward a pseudocubic phase. Transmission electron microscopy study of the x=0.04 composition reveals the existence of antiferroelectric phase with a0a0c+ oxygen octahedron tilting which is in the form of nano-domains. Polarization-electric field and current-electric field hysteresis loops demonstrate that the increase of BA concentration destroys the ferroelectric order and strengthens antiferroelectric order. A much enhanced energy storage density of 1.15 J/cm3 and efficiency of 73.2% is achieved under 105 kV/cm at x=0.06. In addition, its energy storage property is found to depend weakly on temperature within the measurement range of 25–150 °C.  相似文献   

5.
A novel strategy of enhancing the dielectric and energy storage properties of Na0.5Bi0.5TiO3–BaTiO3 (NBT–BT) ceramics by introducing a K0.5Na0.5NbO3 (KNN) ferroelectric phase is proposed herein, and its underlying mechanism is elucidated. The lead-free KNN ceramic decreases the residual polarisation and increases the electric breakdown strength of the NBT–BT matrix through the simultaneous modification of its A-sites and B-sites. The obtained NBT?BT?x?KNN ceramics have a perovskite structure with unifying grains. A bulk 0.9NBT–BT–0.1KNN ceramic sample with a thickness of 0.2 mm possesses a high energy storage density of 2.81 J/cm3 at an applied electric field of 180 kV/cm. Moreover, it exhibits good insulation properties and undergoes rapid charge and discharge processes. Therefore, the obtained 0.9NBT–BT–0.1KNN ceramic can be potentially used in high-power applications because of its high energy density, good insulation properties, and large discharge rate.  相似文献   

6.
《Ceramics International》2016,42(8):9660-9666
Lead-free 0.99[(1−x)(Bi0.5Na0.5)TiO3-x(Bi0.5K0.5)TiO3]–0.01Ta piezoelectric ceramics were prepared by a conventional solid-state reaction process. The ferroelectric properties, and strain behaviors were characterized. Increase of the (Bi0.5K0.5)TiO3 content induces a phase transition from coexistence of ferroelectric tetragonal and rhombohedral to a relaxor pseudocubic phase. Accordingly, the ferroelectric order is disrupted significantly with the increase of (Bi0.5K0.5)TiO3 content and the destabilization of the ferroelectric order is accompanied by an enhancement of the unipolar strain, which peaks at a value of 0.35% (corresponding to a large signal d33 of 438 pm/V) in samples with 20 mol% (Bi0.5K0.5)TiO3 content. Temperature dependent measurements of both polarization and strain from room temperature to 120 °C suggested that the origin of the large strain is due to a reversible field-induced nonpolar pseudocubic-to-polar ferroelectric phase transformation.  相似文献   

7.
(1?x)(Bi0.5K0.5)TiO3xLiNbO3 ((1?x)BKT–xLN) lead-free relaxor ferroelectric ceramics were prepared by a conventional solid-state route and their phase transition behavior and the corresponding electrical properties were investigated. A morphotropic phase boundary separating rhombohedral and tetragonal phases was identified in the composition range of 0.015<x<0.03, where the improved electrical properties of piezoelectric constant d33=75 pC/N and electromechanical coupling factor kp=0.18 were obtained. Moreover, all samples show typical relaxor behavior characterized by the presence of diffuse phase transition and frequency dispersion. It was found that the dielectric relaxation behavior of BKT ceramics can be obviously enhanced with the addition of LN. In addition, the effect of the LN addition on the ferroelectric properties was also investigated by measuring polarization versus electric field hysteresis loops.  相似文献   

8.
In this study, solid solution ceramics of (1−x)Bi0.5K0.5TiO3xCaTiO3 (BKT-CT, x = 0, 0.12, 0.15, 0.18, 0.21, and 0.25) were prepared. A phase transition from the tetragonal symmetry to the pseudocubic symmetry is discovered near x = 0.25. The reasons for the appearance of the pseudocubic phase were discussed. The compositions of x ≤ 0.21 show the ferroelectric ordering at room temperature. The remnant polarization (Pr) is 22.4 μC/cm2 for the x = 0.15 composition. The temperature dependence of the relative permittivity suggests two dielectric anomalies for x ≤ 0.18. The dielectric anomaly in the low-temperature range is related to a spontaneous transition between the ferroelectric and relaxor states. The temperature (TF-R) for the transition decreases with the CT addition, falling from 211°C for x = 0.12-134°C for x = 0.18. Only one relaxor-like dielectric anomaly was observed for x ≥ 0.21. The thin double ferroelectric hysteresis loops have been observed during the ferroelectric-relaxor transition process for x ≥ 0.21. The maximum electrostrain (Sm) reaches 0.155% at 100°C for x = 0.21. The low-temperature Raman measurement suggests the intrinsic tetragonal distortions for x = 0.25.  相似文献   

9.
《Ceramics International》2017,43(16):13612-13617
0.8Bi0.5Na0.5Ti(1-x)NbxO3−0.2Sr0.85Bi0.1TiO3 (BNT-SBT-xNb, x = 0.00, 0.01, 0.02, and 0.03) piezoelectric ceramics were prepared by traditional solid state reaction and the influence of Nb substitution on the phase structure, ferroelectric, piezoelectric, and electric-field-induced strain properties in BNT-SBT ceramics were studied. XRD results exhibited that Nb5+ ions could fully diffuse into BNT-SBT structure to form a solid solution when x = 0.01. P-E loops and S-E curves suggested that the ferroelectric phase transformed to ergodic relaxor state (FE-to-ER) with the increasing the amount of Nb additive, indicating the ferroelectric long-ranged order was disturbed by the excess of Nb. With increasing Nb doping, phase transition temperature from normal ferroelectric to ergodic relaxor (short for TF-R) could be reduced from 120 °C to 40 °C. Furthermore, for sample with x = 0.01, the normalized strain d33* got a maximum value ~571 pm/V due to the phase transition from ergodic relaxor to ferroelectric (ER-to-FE) under electric field.  相似文献   

10.
11.
《Ceramics International》2015,41(6):7897-7902
The piezoelectric and dielectric properties of the (1−x)(Bi,Na)TiO3x(Bi,K)TiO3 (x=0.12, 0.14, 0.18, 0.20 and 0.30) lead-free ceramics were investigated. Specimens were prepared by the conventional mixed oxide method and sintered at 1170 °C in air. Scanning electron microscopy indicated that increasing x from 0.12 to 0.30 causes a decrease in the grain size. The (1−x)(Bi,Na)TiO3x(Bi,K)TiO3 ceramics shows a homogeneous microstructure and excellent dielectric and piezoelectric properties. Specimens with optimum composition showed a piezoelectric charge constant d33 of 166 pC/N, an electromechanical coupling factor kp of 0.5, a dielectric constant εr of 1591.32 at 1 kHz and generated power output of 37.49 nW/cm2.  相似文献   

12.
The effect of nominal Na/Bi ratio on the microstructure and electrical conductivity of A-site fully stoichiometric sodium bismuth titanates, Na0.5+xBi0.5?xTiO3?δ, was investigated in this study. Bulk samples with x?=?0, 0.01, 0.03, 0.05, 0.07, and 0.1 were prepared by conventional solid state reaction method. The as-calcined powders primarily exhibited the perovskite structure, which was identified by X-ray diffraction. Electron microscopic investigation of the sintered samples, however, revealed the presence of secondary phases, the amounts of which were found to increase with increasing Na/Bi ratio. Further elemental analysis by energy dispersive spectroscopy indicated that the secondary phases were mainly composed of sodium titanates with different Na/Ti ratios. The grain bulk and grain boundary conductivities of Na0.5+xBi0.5?xTiO3?δ, measured by two-probe AC electrochemical impedance spectroscopy, significantly increased with increasing Na/Bi ratio when x?≤?0.03, but remained almost constant at higher x. The synergetic effect of oxygen vacancy creation, grain size reduction, and secondary phase formation on the variation in the conductivity upon increasing the nominal Na/Bi ratio in Na0.5+xBi0.5?xTiO3?δ was discussed.  相似文献   

13.
Lead free Ba1?x(Bi0.5Na0.5)xTiO3 (x=0, 0.02, 0.04, 0.06, 0.08, 0.1) ferroelectric ceramics were synthesized by conventional solid state reaction technique. Sintering was done at 1200 °C for 2 h in air atmosphere. The final products have tetragonal symmetry with decreasing c/a ratio confirmed by X-ray diffraction analysis. The grain size varies between 300 nm to 1000 nm for x=0 to 0.1. With increase in Bi0.5Na0.5TiO3 [BNT] content, the room temperature permittivity decreases whereas the Curie temperature (Tc) increases and its highest value was found to be 155 °C for 10 mol% of BNT addition. The ceramics show stable and low dielectric loss characteristics. The remnant polarization (Pr) and the coercive field (Ec) increases monotonously with increase in BNT content. The highest value of 2Pr (=17 μC/cm2) and 2Ec (=22 Kv/cm) was obtained for x=10 mol% BNT addition.  相似文献   

14.
Bismuth sodium zirconate (BNZ) based ceramics with a composition of (Bi0.5Na0.5)1?1.5xLaxTi0.41Zr0.59O3 where x = 0, 0.005, 0.01, 0.02 and 0.03 were prepared by a solid-state mixed oxide method and sintered at the temperature of 900 °C for 2 h. All the samples had relative density between 91 and 97% of their theoretical values. Phase analysis using X-ray diffraction indicated single rhombohedral or pseudo-cubic perovskite structure. SEM showed that addition of La caused the average grain size of the BNTZ ceramics to decrease as well as an improvement of sample density. Dielectric properties at room temperature measured at 10 kHz indicated that addition of La increased the dielectric constant. The results of ferroelectric characterization also revealed that adding La caused a decrease in coercive field without affecting the remanent polarization.  相似文献   

15.
(1?x)(Bi0.4871Na0.4871La0.0172TiO3)?x(BaZr0.05Ti0.95O3) ceramics (abbreviated (1?x)BNLT?xBZT) where 0.1≤x≤0.3 were fabricated by the combustion technique using glycine as fuel. BNLT and BZT powders were calcined at temperatures of 825 °C for 4 h and 925 °C for 6 h, respectively. After that they were mixed with the different compositions. It was found that the optimum sintering temperature of (1?x)BNLT?xBZT ceramic was obtained at 1125 °C for 2 h. This ceramic had the highest density. The structure of the (1?x)BNLT?xBZT ceramics exhibited the co-existence of tetragonal and rhombohedral phases with x≤0.1. The tetragonality increases with the increase of x content. The average grain size, the density and the Curie temperatures decrease with increasing x content. The maximum dielectric constant and the highest Pr were at about 4850 and 12.7 μC/cm2, respectively, and were obtained by the 0.85BNLT?0.15BZT sample.  相似文献   

16.
Lead-free solid solutions (1?x)Bi0.5Na0.5TiO3 (BNT)–xBaZr0.25Ti0.75O3 (BZT) (x=0, 0.01, 0.03, 0.05, and 0.07) were prepared by the solid state reaction method. X-ray diffraction (XRD) and Rietveld refinement analyses of 1?x(BNT)–x(BZT) solid solution ceramic were employed to study the structure of these systems. A morphotropic phase boundary (MPB) between rhombohedral and cubic structures occured at the composition x=0.05. Raman spectroscopy exhibited a splitting of the (TO3) mode at x=0.05 and confirmed the presence of MPB region. Scanning electron microcopy (SEM) images showed a change in the grain shape with the increase of BZT into the BNT matrix lattice. The temperature dependent dielectric study showed a gradual increase in dielectric constant up to x=0.05 and then decrease with further increase in BZT content. Maximum coercive field, remanent polarization and high piezoelectric constant were observed at x=0.05. Both the structural and electrical properties show that the solid solution has an MPB around x=0.05.  相似文献   

17.
《Ceramics International》2014,40(6):7947-7951
Lead free (1−x)(0.8Bi0.5Na0.5Ti0.5O3–0.2Bi0.5K0.5TiO3)–xBiZn0.5Ti0.5O3 (x=0–0.06) (BNT–BKT–BZT) thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by a sol–gel processing technique. The effects of BZT content on the structural, dielectric, ferroelectric and piezoelectric properties of the BNT–BKT–BZT thin films were investigated systematically. The BNT–BKT–BZT thin films undergo a transition from ferroelectric to relaxor phase with increasing temperature. The phase transition temperature decreases with the increase of BZT content. The BNT–BKT–BZT thin film with x=0.04 exhibits the best ferroelectric properties (Pmax=40 µC/cm2 and Pr=10 µC/cm2), largest dielectric constant (ε=560) and piezoelectric constant (d33=40 pm/V). This finding demonstrates that the BNT–BKT–BZT thin film has an excellent potential for demanding high piezoelectric properties in lead free films.  相似文献   

18.
Lead-free piezoelectric ceramics 0.98(KxNa1?x)NbO3–0.02BiScO3 (0.98 KxN1?xN–0.02BS) (x = 0.30–0.60) doped with 0.8 mol% Mn were prepared by conventional solid-state sintering. The effects of K/Na ratio on the phase structure and electrical properties of the Mn doped 0.98 KxN1?xN–0.02BS (0.98 KxN1?xN–0.02BS–Mn) were mainly studied. It is experimentally demonstrated that the electrical properties strongly depend on K/Na ratio in the 0.98 KxN1?xN–0.02BS–Mn ceramics and when x = 0.45 the ceramics exhibit optimum electrical properties: d33  308 pC/N, kp  0.495, ?r  1577, tan δ  0.028. These results show that the 0.98 KxN1?xN–0.02BS–Mn ceramic with x = 0.45 is a promising lead-free piezoelectric material.  相似文献   

19.
《Ceramics International》2016,42(11):12964-12970
Lead-free 0.99[(1−x) Bi0.5(Na0.80K0.20)0.5TiO3xBiFeO3]–0.01(K0.5Na0.5)NbO3 (BNKT20–100xBF–1KNN) piezoelectric ceramics were fabricated through conventional techniques. Results showed that changes in BF content of BNKT20–100xBF–1KNN induced transition from the ferroelectric phase to the ergodic relaxor phase. These changes also significantly disrupted long-range ferroelectric order, thereby correspondingly adjusting the ferroelectric-relaxor transition point TF-R to room temperature. A large strain of 0.39% at the electric-field of 80 kV/cm (corresponding to a large signal d33* of 488 pm/V) was obtained at x=0.06, which originated from the composition proximity to the ferroelectric-relaxor phase boundary. Moreover, the high-strain material exhibited exceptional fatigue resistance (up to 106 cycles) as a result of the reversible field-induced phase transition. The proposed material exhibits potential for novel ultra-large stroke and nonlinear actuators that require enhanced cycling reliability.  相似文献   

20.
Lead-free relaxor ferroelectric ceramics (1?x)(K0.5Bi0.5)TiO3xBi(Ni0.5Ti0.5)O3 were prepared by a conventional solid-state route, the phase transition behavior and corresponding electrical properties were investigated. A typical morphotropic phase boundary (MPB) between rhombohedral and tetragonal ferroelectric phases was identified to be in the range of 0.05<x<0.07 where the optimum piezoelectric and electromechanical properties of d33=126 pC/N and kP=18% were achieved. Most importantly, a high Curie temperature ~320 °C, around which the material shows a typical relaxor ferroelectric behavior characterized by the presence of diffuse phase transition and frequency dispersion, was obtained in MPB compositions, significantly higher than those of some existing MPB lead-free titanate systems. These results demonstrate a tremendous potential of the studied system for device applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号