首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Lead-free ceramics (1 ? x)(K0.48Na0.52)NbO3–(x/5.15)K2.9Li1.95Nb5.15O15.3 (x = 0.3–0.6, KNN–KLN100x) were prepared by conventional sintering technique at a low temperature of 960 °C. The effects of KLN contents on microstructure, dielectric, and piezoelectric properties were investigated. After the addition of KLN, the sintering performance and Curie temperature of the ceramics were markedly improved. The ceramics with x = 0.3 exhibited very good piezoelectric properties: d33 = 138 pC/N, kp = 45.03%, Tc = 495 °C, the dielectric constant at room temperature ?r (RT) = 478 and the maximum dielectric constant ?r (max) = 5067. These results indicated that the KNN–KLN100x lead-free ceramics sintered at low temperatures are promising for high temperature piezoelectric applications.  相似文献   

2.
In this study, Ba- and Ti-doped Li0.06(Na0.5K0.5)0.94NbO3 [(1 ? x)Li0.06(Na0.5K0.5)0.94NbO3xBaTiO3 (x = 0–0.07)] ceramics were prepared by using conventional solid state reaction method, and the microstructure and electric properties of these samples were investigated. The grain size distribution of non-doped Li0.06(Na0.5K0.5)0.94NbO3 ceramics was relatively wide. The microstructure was composed of grains ranging 1.1–5.0 μm in size. However, with increasing Ba and Ti content, the grain size distribution became narrow and the average grain size decreased from 2.0 to 0.9 μm in size. In particular, the microstructure of x = 0.07 sample was composed of grains ranging 0.5–2.2 μm in size. As a result, the frequency dispersion of dielectric constant for the (1 ? x)Li0.06(Na0.5K0.5)0.94NbO3xBaTiO3 (x = 0–0.07) ceramics was reduced and the mechanical quality factor Qm was enhanced with increasing Ba and Ti content.  相似文献   

3.
Lead free ferroelectric ceramics near the morphotropic phase boundary (MPB) of KxNa1?x(NbO3)/KNN system (where x=0.48, 0.50, 0.52) were synthesized in the single perovskite phase by the partial co-precipitation synthesis route. The compositional dependences of phase, structure and electrical properties were studied in detail. X-ray diffraction (XRD) study revealed the coexistence of orthorhombic and monoclinic structures in K0.50N0.50NbO3. SEM characterization of the sintered KNN ceramics revealed dense and homogeneous packing of grains. Room temperature (RT) dielectric constant (εr) ~648, dielectric loss (tan δ) ~0.05 at 100 kHz, a relatively high density (ρ) ~4.49 g/cm3, remnant polarization (Pr) ~11.76 μC/cm2, coercive field (Ec) ~9.81 kV/cm, Curie temperature (Tc) ~372 °C and piezoelectric coefficient (d33) ~71 pC/N observed in K0.50N0.50NbO3 suggested that it can be an important lead free ferroelectric material.  相似文献   

4.
A series of (1-x)(0.65BaTiO3-0.35Bi0.5Na0.5TiO3)-xNa0.73Bi0.09NbO3 ((1-x)BBNT-xNBN) (x = 0–0.14) ceramics were designed and fabricated using the conventional solid-state sintering method. The microstructure, dielectric property, relaxor behavior and energy storage property were systematically investigated. X-ray diffraction results reveal a pure perovskite structure and dielectric measurements exhibit a relaxor behavior for the (1-x)BBNT-xNBN ceramics. The slim polarization electric field (P-E) loops were observed in the samples with x  0.02 and the addition of Na0.73Bi0.09NbO3 (NBN) could decrease the remnant polarization (Pr) of the (1-x)BBNT-xNBN ceramics obviously. The sample with x = 0.08 exhibits the highest energy storage density of 1.70 J/cm3 and the energy storage efficiency of 82% at 172 kV/cm owing to its submicron grain size and high relative density. These results show that the (1-x)BBNT-xNBN ceramics may be promising lead-free materials for high energy storage density capacitors.  相似文献   

5.
(1?x)Na0.47K0.47Li0.06NbO3 (NKLN)–xAgSbO3 lead-free piezoelectric ceramics were prepared using a reaction sintering method. The effects of AgSbO3 doping on the structural and electrical properties of NKLN ceramics sintered at 1000–1040 °C were studied. The dopant affected densification, phase content, sintering temperature, microstructure and electrical properties. Variations in the relative intensity of X-ray diffraction peaks were consistent with Ag+ and Sb5+ ions substituting on the perovskite lattice to produce a change in the proportions of co-existing tetragonal and orthorhombic phases. Grain growth during secondary re-crystallization was also affected. The temperature of the orthorhombic–tetragonal (O–T) phase transition and the Curie temperature (TC) decreased as a result of AgSbO3 modifications. The dielectric and piezoelectric properties are enhanced for the composition near the orthorhombic–tetragonal polymorphotropic phase boundary. The 0.92Na0.47K0.47Li0.06NbO3–0.08AgSbO3 ceramics exhibited optimum electrical properties (d33=252 pC/N, εr=1450, tan δ=0.02, and TC=280 °C). These results reveal that (1?x)Na0.47K0.47Li0.06NbO3xAgSbO3 ceramics are promising materials for lead-free piezoelectric application.  相似文献   

6.
《Ceramics International》2016,42(4):4648-4657
Lead-free (1−x)(K0.37Na0.63)NbO3-xCa(Sc0.5Nb0.5)O3 (x=0.050, 0.070, 0.090, 0.095 and 0.100) transparent ferroelectric ceramics have been fabricated by pressureless sintering procedure. Transmittance of 0.91(K0.37Na0.63)NbO3-0.09Ca(Sc0.5Nb0.5)O3 ceramics sintered in sealed alumina crucible was 15% higher than those sintered unsealed in air. By increasing the content of Ca(Sc0.5Nb0.5)O3, the phase structure of (K0.37Na0.63)NbO3 ceramics transformed from orthorhombic to tetragonal symmetry first and then to pseudo cubic symmetry. The 0.91(K0.37Na0.63)NbO3-0.09Ca(Sc0.5Nb0.5)O3 ceramics exhibited high density (98%), high transmittance (60%) in the near-IR region and relatively good electrical properties (εr=1914, tanδ=0.037, Tc=147 °C, Pr=6.88 μC/cm2, Ec=8.49 kV/cm). Meanwhile, the introduction of Ca(Sc0.5Nb0.5)O3 induced a composition fluctuation in the (K0.37Na0.63)NbO3 lattice and made the ceramics more relaxor-like, which would lead to a further reduction of light scattering. These results demonstrated that 0.91(K0.37Na0.63)NbO3-0.09Ca(Sc0.5Nb0.5)O3 could be promising lead-free transparent ferroelectric ceramics.  相似文献   

7.
Lead-free piezoelectric (1 ? x)Bi0.5(Na0.78K0.22)0.5TiO3xK0.5Na0.5NbO3 (BNKT–xKNN, x = 0–0.10) ceramics were synthesized using a conventional, solid-state reaction method. The effect of KNN addition on BNKT ceramics was investigated through X-ray diffraction (XRD), dielectric, ferroelectric and electric field-induced strain characterizations. XRD revealed a pure perovskite phase with tetragonal symmetry in the studied composition range. As the KNN content increased, the depolarization temperature (Td) as well as maximum dielectric constant (?m) decreased. The addition of KNN destabilized the ferroelectric order of BNKT ceramics exhibiting a pinched-type hysteresis loop with low remnant polarization (11 μC/cm2) and small piezoelectric constant (27 pC/N) at 3 mol% KNN. As a result, at x = 0.03 a significant enhancement of 0.22% was observed in the electric field-induced strain, which corresponds to a normalized strain (Smax/Emax) of ~434 pm/V. This enhancement is attributed to the coexistence of ferroelectric and non-polar phases at room temperature.  相似文献   

8.
《Ceramics International》2016,42(4):4978-4983
The supercapacitor based piezoelectric material composite (Na,K)NbO3–CaCu3Ti4O12 (NKN–CCTO) is investigated for possible application in piezoelectric devices. (1−x)NKN–xCCTO (0.015≤x≤0.06) with different sintering conditions is researched for supercapacitor based piezoelectric applications. The 0.94NKN–0.06CCTO composite sintered at 975 °C shows the highest dielectric permittivity of 796. Clear SEM images of (1−x)NKN–xCCTO reveal that these compositions have high density well-crystallized structures. The composition and sintering temperature dependence of dielectric permittivities and piezoelectric coefficients, plotted in three dimensions, show that the 0.985NKN–0.015CCTO composite sintered at 1025 °C has a moderate dielectric permittivity of 405 and a piezoelectric constant of 98 pC/N.  相似文献   

9.
Li0.02(KxNa1?x)0.98NbO3(x = 0.35–0.55) ceramics were prepared using the conventional solid state sintering method. The thermal behaviors of Li-modified (KxNa1?x)NbO3 ceramics were investigated from ?30 to 150 °C, and the effect of Na/K ratio in (KxNa1?x)NbO3 ceramics on thermal behavior and electrical properties was also studied. In the case of Li0.02(KxNa1?x)0.98NbO3 ceramics with 0.5 wt.% ZnO, the transition temperature was sharply decreased because of a phase transition as the composition range of x was 0.425–0.475. From the results of the temperature dependence of piezoelectric properties, it is assumed that the Na-rich phase is less stable than the K-rich phase for temperature change.  相似文献   

10.
The phases, microstructure, composition analysis and microwave dielectric properties of (1 ? x)MgWO4xCaTiO3 ceramics with Li2CO3–4H3BO3 additions prepared by solid-state reaction method have been investigated by using X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy and advantest network analyzer. The τf of (1 ? x)MgWO4xCaTiO3 were dependent on phase constitutions. The microwave dielectric properties of 0.91MgWO4–0.09CaTiO3 ceramics with Li2CO3–4H3BO3 were characterized, the results indicated that the ?r and Q × f were associated with the sintering temperature and amount of Li2CO3–4H3BO3. The sintering temperature of ceramics was reduced to 950 °C from 1150 °C and τf was modified to 0 ppm/°C with good Q × f. Addition of 5.0 wt% Li2CO3–4H3BO3 in 0.91MgWO4–0.09 CaTiO3 ceramics sintered at 950 °C showed excellent dielectric properties of ?r = 15.5, Q × f = 20,780 GHz (f = 7.1 GHz) and τf  0 ppm/°C. The material has a chemical compatibility with silver, making it a very promising candidate materials for LTCC applications.  相似文献   

11.
12.
In order to stabilize the perovskite structure and improve the storage energy density (U) of Pb(Tm1/2Nb1/2)O3 (PTmN) based materials, Pb(Mg1/3Nb2/3)O3 (PMN) was introduced into PTmN to form binary (1-x)PTmN-xPMN solid solution ceramics. The XRD patterns show that all the compositions belong to orthorhombic phase with space group Pbnm. The Curie temperature (TC) gradually decreases while the dielectric constant (ε') increases for (1-x)PTmN-xPMN with increasing PMN content. The ε' of each composition above TC obeys the Curie-Weiss law. The appearance double hysteresis loop confirms the antiferroelectric nature of (1-x)PTmN-xPMN (x = 0.02–0.18) ceramics. With the increase of PMN concentration, the maximum polarization slowly increases from 8.58 μC/cm2 to 29.5 μC/cm2 while the threshold electric field (EA-F) gradually declines from 290 kV/cm to 120 kV/cm. The maximum of U (3.12 J/cm3) is obtained in 0.92PTmN-0.08PMN ceramic with moderate EA-F = 220 kV/cm, which makes (1-x)PTmN-xPMN ceramics safe in practical application.  相似文献   

13.
This study aimed to fabricate and characterize new complex-structured ceramics with formula (1-x)Pb(Zr0.52Ti0.48)O3xSrBi2Nb2O9 or (1-x)PZT–xSBN (where x=0, 0.1, 0.3 and 0.5 weight fraction). The ceramics were prepared by a solid-state mixed-oxide method and sintered at temperatures between 1000 and 1250 °C. Optimum sintering temperature for this system was found to be 1050 °C for 3 h dwell time. X-ray diffraction patterns of (1-x)PZT–xSBN powders showed peak intensities of two-phase mixture corresponding to the relative amount of each phase as a result of SBN addition. Microstructure of (1-x)PZT–xSBN ceramics showed a variation in grain shape and grain size. The small addition of SBN (x=0.1) was also found to improve ferroelectric properties of pure PZT ceramic.  相似文献   

14.
《Ceramics International》2022,48(12):17246-17252
Herein, (0.95?x)K0.48Na0.52NbO3-0.05SrTiO3-xCaZrO3 piezoelectric ceramics were prepared using a conventional solid sintering process, and their microstructures, phase structures, and ferroelectric, dielectric, and strain properties were studied. The crystal structure of the ceramics changed from the coexistence of an orthogonal–tetragonal phase on the orthogonal side at x = 0 to that on the tetragonal side at x = 0.02 by improving the orthogonal–tetragonal transition temperature (~20 °C) with increasing CaZrO3 (abbreviated as CZ) doping. A high electric field–induced strain of 0.33% with a Curie temperature of Tc = 256 °C was obtained at x = 0.02 and was approximately two times that observed at x = 0. The dielectric constant and maximum polarization were the highest at x = 0.02 in this (0.95?x)K0.48Na0.52NbO3-0.05SrTiO3-xCaZrO3 system. These materials would be promising lead-free ceramics in the future.  相似文献   

15.
While most of the previous studies have focused on the processing and electrical properties of KNN-based ceramics, very little research has been carried out to evaluate their mechanical behavior. This work presents for the first time an examination of the fracture toughness, KIC, of the most widely studied (KxNa1 ? x)NbO3 (KNN)-based lead-free ceramics modified with lithium, tantalum and antimony. The samples were produced through the conventional mixed-oxide route and the KIC values were measured using the single edge V-notched beam (SEVNB) method under four-point bending. The mean KIC values were determined to be 0.48 ± 0.18 MPa m1/2 for (K0.48Na0.48Li0.04)NbO3, 0.8 ± 0.18 MPa m1/2 for (K0.5Na0.5)(Nb0.9Ta0.1)O3, 0.86 ± 0.04 MPa m1/2 for (K0.48Na0.48Li0.04)(Nb0.9Ta0.1)O3 and 1.06 ± 0.21 MPa m1/2 for (K0.48Na0.48Li0.04)(Nb0.86Ta0.1Sb0.04)O3 compositions. The microstructure, phase structure and dielectric constant values of the samples have been used to correlate the results of the KIC values.  相似文献   

16.
(1?x)Bi0.51(Na0.82K0.18)0.50TiO3xBa0.85Ca0.15Ti0.90Zr0.10O3 [(1?x)BNKT–xBCTZ] ceramics were prepared by the conventional solid-state method, and the effect of BCTZ content on their microstructure and electrical properties was investigated. A stable solid solution with a pure perovskite phase is formed between BNKT and BCTZ, and these ceramics have a coexistence of rhombohedral and tetragonal phases in the range of 0  x < 0.15. Their Tm and Td values are strongly independent on the BCTZ content. Moreover, the sintering temperature strongly affects the ferroelectric and piezoelectric properties of these ceramics with x = 0.02. These ceramics with x = 0.02 exhibit an optimum electrical behavior of d33  205, kp  0.25, Pr  31.8 μC/cm2, and Ec  19.1 kV/cm together with a high Td value of ~91 °C when sintered at 1180 °C and poled at an optimum condition. As a result, the (1?x)BNKT–xBCTZ ceramic is a promising candidate material for lead-free piezoelectric ceramics.  相似文献   

17.
《Ceramics International》2007,33(6):895-900
Microwave dielectric ceramics of xCaTiO3–(1  x)TiO2–3ZnTiO3 (x = 0.05–1.00) were prepared by the solid-state reaction method. The phase relations were investigated using X-ray powder diffraction. In all the studied range, the sintered ceramic was multiphase, which was also verified by scanning electron microscopy (SEM) observation, as well as the energy-dispersive X-ray spectroscopy (EDX) analysis. With the increase of x from 0.05 to 0.25, the amount of rutile phase decreases due to the formation of new Ca2Zn4Ti16O38 polytitanates. And with x increasing from 0.25 to 1.00, rutile phase disappears while CaTiO3 phase increases, accompanying with a slight decrease of Ca2Zn4Ti16O38. Thus, it is considered that the preferential chemical reaction in the system enhanced the formation of the Ca2Zn4Ti6O38 compound, CaTiO3 and rutile phases in the ceramics. Moreover, the microwave dielectric properties of the ceramics were investigated. The simulated dielectric properties of the ceramics were also calculated based on the empirical model. The simulated results and the experimental ones have similar trends, which show that the change of microwave dielectric properties is related to the change of the phase composition in the multiphase ceramics.  相似文献   

18.
(Bi1  xRx)NbO4 (R = Ce,Nd,Dy,Er; x = 0.03 mol) ceramics with 0.1 wt.% CuO + V2O5 as a sintering aid were prepared by conventional solid state reaction process. The microwave dielectric properties of (Bi1  xRx)NbO4 ceramics were investigated as a functional of R ions. The microwave dielectric properties such as dielectric constant, Q value and temperature coefficient of resonant frequency (TCF) are found to correlate with the R ions. When R = Ce, the dielectric constant, Q value and TCF are 44.7, 5000 and −4.9 ppm/°C, respectively at about 5 GHz. The relation of microwave dielectric properties and the ionic radii, polarizability and bond valence of R (R = Ce, Nd, Dy, Er) was discussed. The Q value decreased with decreasing the bond valence and the size of R ions. The dielectric constant decreased with decreasing polarizability.  相似文献   

19.
Domain structure plays an important role in determining piezoelectric properties of ferroelectric materials. However, limited studies have been carried out on the domains of (K,Na)NbO3-based lead free ceramics. The domain configuration, domain reversal behavior and piezoelectric properties of (K0.50Na0.50)1−xLix(Nb0.80Ta0.20)O3 (KNN-Lix) ceramics with x = 0.02, 0.035 and 0.05, were studied in this research. It was observed that ceramics with different phases show distinctly different domain configurations and domain reversal behaviors. When compared to other two compositions, x = 0.035 with coexistent orthorhombic-tetragonal phases at room temperature was found to possess curved domain stripes and larger average domain width, leading to optimal piezoelectric properties with d33* = 260 pm/V and kp = 48%. Based on the microstructures, polarization hysteresis loops and unipolar strain curves under high electric field, it was concluded that the larger domain size and easier domain switching are due to the coexistence of orthorhombic and tetragonal phases, account for the improved properties in KNNT-Li0.035 ceramics.  相似文献   

20.
Solid solutions of (x)Re(Co1/2Ti1/2)O3–(1  x)CaTiO3 (Re = La and Nd, abbreviated to xLCT and xNCT, respectively) where x = 0, 0.25, 0.5, 0.75 and 1 have been fabricated using solid state synthesis. Samples have been examined using X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM) and their dielectric properties measured at microwave (MW) frequencies. Formation of single phase solid solutions were confirmed by XRD and the measured lattice parameters varied linearly from LCT (a = 5.66 Å, b = 7.867 Å and c = 5.494 Å) and NCT (a = 5.636 Å, b = 7.914 Å and c = 5.461 Å) to CT (a = 5.596 Å, b = 7.731 Å and c = 5.424 Å). XRD and TEM confirmed both in-phase and antiphase rotations of O-octahedra consistent with an aac+ tilt system across the entire solid solution series. Electron diffraction revealed that LCT and NCT have reflections associated with B-site cation ordering which is absent for x  0.75. MW dielectric measurements showed that LCT and NCT were highly insulating with microwave quality factor (Qf0) values of 39,000 and 34,000, respectively. Compositions anticipated to have a zero temperature coefficient of resonant frequency (τf) are 0.48LCT-CT and 0.52NCT-CT with ɛr = 45 and Qf0  5000 and ɛr = 43 and Qf0  4000, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号