共查询到18条相似文献,搜索用时 62 毫秒
1.
二维方法用于图像矩阵特征提取,虽然速度快,但影响了分类速度。针对二维线性鉴别分析(Two-Dimensional Linear Discriminant Analysis,2DLDA)的特点,研究了一种基于图像分块的改进Fisher人脸识别算法,该算法首先对人脸图像进行压缩降维处理,得到相应的特征矩阵,然后利用改进Fisher算法对特征矩阵进行类间离散度矩阵和类内离散度矩阵的计算,该算法充分考虑了类别信息,避免了传统Fisher算法造成的小样本问题,有效提高了分类速度。基于ORL(Olivetti Research Laboratory)与Yale人脸数据库的实验结果证明了该算法的有效性。 相似文献
2.
提出了二维主成分分析(2DPCA)与二维线性鉴别分析(2DLDA)相结合的双向压缩投影的子空间人脸识别方法.该方法在进行一次2DPCA运算后,对特征矩阵进行转置,再进行2DLDA运算,与(2D)~2PCA与(2D)~2LDA相比,充分利用了2DPCA和2DLDA的优点,既包含了样本的类别信息,又消除了图像矩阵行和列的相关性,有效地提取了行和列的识别信息,识别特征维数也大幅度减少.在ORL和PERET人脸库上的实验表明,在不影响识别速度的情况下,其识别率优于现有二维特征提取方法. 相似文献
3.
4.
改进的线性判别分析及人脸识别 总被引:1,自引:0,他引:1
为有效解决传统LDA(线性鉴别分析)的小样本规模问题,提出一种改进的LDA算法。首先对样本进行无损降维;然后在Fisher准则基础上,用散度矩阵差代替散度矩阵的比值,避免对类内矩阵求逆的同时也降低了计算复杂度,实现有效的特征抽取;最后实现对人脸的识别。实验结果表明,该算法是有效的,优于传统LDA方法。 相似文献
5.
在对2DPCA人脸识别方法研究的基础上,提出一种改进的2DPCA人脸识别算法,该算法对训练集进行两次2DPCA特征提取,以此重建散布矩阵,从而大大降低特征矩阵的存储空间.并在标准Yale与ORL人脸识别数据库上进行对比实验,改进的2DPCA人脸算法能有效改善识别性能,优于传统的2DPCA方法.最后,再通过和PCA,LD... 相似文献
6.
基于2DLDA方法,提出了一种基于图像分块的二维线性鉴别分析(M2DLDA)的人脸识别方法。该方法首先对原始人脸图像进行必要的预处理后进行分块,再对分块后的子图像分别采用2DLDA方法进行特征提取,最后用最小距离分类器进行识别。该方法的优点:分块后能有效的抽取人脸图像的局部特征有利于分类;降低了2DLDA方法提取的特征矩阵的维数;特征提取是基于图像矩阵的,抽取方便快速。在ORL人脸数据库上的实验结果表明:该方法在识别性能上优于2DLDA方法。 相似文献
7.
结合模糊集理论、双向二维主成分-线性鉴别分析((2D)2PCALDA)的特点,提出一种新的人脸图像特征提取方法。算法首先对人脸图像进行二维主成分分析(2DPCA)处理,再用模糊K近邻算法计算图像的隶属度矩阵,并将其融入到2DLDA过程中,从而得到模糊类间散射矩阵和模糊类内散射矩阵。与(2D2PCALDA相比,该算法充分利用了(2D)2PCALDA的优点,有效地提取了行和列的识别信息,并充分考虑了样本的分布信息。在Yale和FERET人脸数据库上的实验结果表明,该方法识别效果优于(2D)2PCALDA、双向二维主成分分析((2D)2PCA)等方法。 相似文献
8.
在原始相对梯度算子的基础上,提出一种新的相对梯度算子,并将它与二维主成分分析(2DPCA)或者二维Fisher线性判别分析(2DFLD)相结合,形成一种基于改进相对梯度算子的人脸识别算法。在AR库和Yale_B库上的实验表明,基于改进相对梯度算子的人脸识别算法对人脸图像的光照、表情等变化均具有较好的鲁棒性,识别准确率明显高于只用2DPCA或2DFLD进行特征抽取的人脸识别方法,以及基于原始相对梯度算子的人脸识别算法。同时采用三种不同大小的窗口分别进行实验,实验结果证明,当窗口大小为3×3时,识别效果相对最好。 相似文献
9.
针对单一人脸特征在人脸识别中的局限性问题和二维主成分分析人脸特征缺少判别信息的问题,利用互补思想,提出了一种改进的二维主成分分析与二维线性鉴别分析加权融合的人脸识别算法。利用离散余弦变换对原始人脸图像进行压缩并重建,以滤除图像中人眼并不敏感的中高频部分,再利用二维主成分分析方法进行人脸特征的提取;运用二维线性鉴别分析方法提取原始人脸图像中具有鉴别性的人脸特征;最后,提出一种自适应的权值选取方法,将两种人脸特征进行加权融合以实现分类识别。在ORL和Yale人脸数据库上的实验结果证明了该方法的有效性。 相似文献
10.
基于改进的PCA算法和Fisher线性判别的人脸识别技术 总被引:10,自引:0,他引:10
通过对主成分分析法(PCA)的数学公式进行改进,使其具有灰度归一化操作能力,从而克服光照对目标的影响,再将改进后的主成分分析法和F isher线性判别分析方法组合起来用于人脸识别,在ORL人脸数据库上进行了实验,取得了满意的识别效果. 相似文献
11.
极大边界准则是近年来提出的一种有监督的线性空间降维方法,该方法通过求解一般的特征方程来获得最优的特征向量,不用计算高维矩阵的逆,克服了特征提取中遇到的小样本问题。然而,极大边界准则只选择数据的全局结构,忽略了数据局部几何结构,而在人脸识别中,数据的局部几何结构起着非常重要的作用。针对极大边界准则这一局限性,提出了一种新的极大边界准则算法。该方法选择数据的邻域点最优重构系数用在目标函数中,保留了数据的局部几何结构,从而在低维空间中提取出更好的分类特征。本文还将该方法用在人脸识别中,通过在两个数据库中的实验,证明了其较主成分分析法,线性判别式方法以及平均邻域极大边界准则算法具有更好的识别性能。 相似文献
12.
在2维线性鉴别分析(2DLDA)的基础上.介绍了2维异方差鉴别分析(2DHDA),并将其应用于人脸识别.2DHDA算法去除了2DLDA算法样本类内协方差相等的约束,克服了异方差鉴别分析(HDA)算法的"小样本"问题.首先,根据2DLDA准则定义2DHDA准则;然后,将2DHDA准则取对数,用梯度下降法求得最优投影矩阵,人脸图像向最优投影矩阵投影提取人脸图像的特征;最后,最小距离分类器完成人脸识别.基于ORL与Yale混合人脸数据库的实验结果表明了2DHDA应用于人脸识别的有效性. 相似文献
13.
提出了模块2DPCA(two-dimensional principal component analysis)的人脸识别方法。模块2DPCA方法先对图像矩阵进行分块,将分块得到的子图像矩阵直接用于构造总体散布矩阵,然后利用总体散布矩阵的特征向量进行图像特征抽取。与基于图像向量的鉴别方法(比如PCA)相比,该方法在特征抽取之前不需要将子图像矩阵转化为图像向量,能快速地降低鉴别特征的维数,可以完全避免使用矩阵的奇异值分解,特征抽取方便;此外,模块2DPCA是2DPCA的推广。在ORL和NUST603人脸库上的试验结果表明,模块2DPCA方法在识别性能上优于PCA,比2DPCA更具有鲁棒性。 相似文献
14.
15.
论文提出了一种基于改进的自适应主元提取算法的人脸识别方法。采用改进的自适应主元提取算法将人脸图像由高维观测空间投影到低维特征空间,通过改进前馈网络权值更新方程,降低算法的复杂度和计算量。基于三维人脸形变模型,采用区域填充和曲面消隐算法根据一幅人脸图像生成多个虚拟样本,克服人脸识别中的小样本问题。在ORL和UMIST数据库上的实验结果表明,该文提出的算法在识别性能上明显高于传统的Eigenface和Fisherface方法。 相似文献
16.
2维特征抽取方法(如2DPCA、2DLDA),因为其抽取特征的速度和识别率要比1维的方法好,所以在人脸识别中得到了广泛的应用。最近基于2DPCA又提出了对角主成份分析(diagonal principal component analysis,DiaPCA),该方法由于保持了图像的行变化和图像的列变化之间的相关性,从而克服了2DPCA仅能反映图像行之间的变化,而忽略了图像列之间变化的缺点。但是,由于DiaPCA并没在特征抽取中融入鉴别信息,同时2DLDA也具有与2DPCA同样的缺点,从而分别影响了DiaPCA与2DLDA两种方法的识别性能。针对这一问题,提出了一种对角线性鉴别分析(diagonal linear dicriminant analysis,DiaLDA)的新算法,该新算法是基于对角人脸图像来求解最优鉴别向量。该新算法在ORL和FERET人脸库进行了实验,并与PCA、Fisherface、DiaPCA、2DLDA等方法进行了比较。实验结果表明,该方法比其他方法的识别性能要好。 相似文献
17.
基于分块PCA的人脸识别方法 总被引:3,自引:0,他引:3
本文提出了一种称为M2PCA+FDA的新的人脸识别方法.新方法从模式的原始数字图像出发,先对样本图像进行分块,对分块得到的子图像矩阵采用PCA进行特征抽取,从而得到能代替原始模式的低维的新模式,然后,对新模式施行“Fisherfaces”方法,实现模式的分类.其特点是能有效地抽取图像的局部特征,正是这些特征使此类模式区别于彼类.在ORL和NUST603两个人脸数据库上对M2PCAA-FDA方法进行了测试,实验的结果表明,本文提出的方法在识别性能上优于“Fisherfaces”方法和PCA方法. 相似文献
18.
刘忠宝 《计算机工程与科学》2011,33(7):89
线性判别分析算法是一种经典的特征提取方法,但其仅在大样本情况下适用。本文针对传统线性判别分析算法面临的小样本问题和秩限制问题,提出了一种改进的线性判别分析算法ILDA。该方法在矩阵指数的基础上,重新定义了类内离散度矩阵和类间离散度矩阵,有效地同时提取类内离散度矩阵零空间和非零空间中的信息。若干人脸数据库上的比较实验表明了ILDA在人脸识别方面的有效性。 相似文献