共查询到20条相似文献,搜索用时 15 毫秒
1.
Shengdong Sun Hui Liu Longlong Fan Yang Ren Xianran Xing Jun Chen 《Ceramics International》2021,47(4):5256-5264
Grain size effect plays a vital role in piezoelectric performance from both scientific and technological view. However, the underlying structural mechanism related to grain size is still unclear. In the present study, the structural mechanism of grain size effect on piezoelectric performance has been revealed in the prototype Pb(Zr,Ti)O3 system by using in-situ synchrotron X-ray diffraction. The miniaturization of grain size tends to favor the appearance of higher symmetric tetragonal phase, while a single monoclinic phase is determined in the coarse-grained ceramics. The direct structural evidence reveals that both tetragonal and monoclinic phases in the fine-grained ceramics are less sensitive to the electric field, corresponding to the inferior piezoelectric performance, while the single monoclinic phase in the coarse-grained ceramics is more active to be driven by the electric field, generating good piezoelectric behavior. Both domain switching ability and lattice strain are suppressed with decreasing grain size, which directly leads to the deterioration in piezoelectric performance. The current results will benefit the structural understanding of the size effect of piezoelectric and other related systems. 相似文献
2.
Pure and Pb(Y1/2Nb1/2)O3 (PYN)-doped Pb(Zr0.53Ti0.47)O3 have been characterized. The samples were prepared by conventional mixed-oxide ceramic technology. PYN dopant was added to PZT at content levels ranging from 1 to 2.5 mol%. The microstructures of the samples were examined using SEM and TEM. The average grain size was observed to decrease as the dopant content increased. Herringbone-like and wedge-shaped domain patterns were observed in all the samples. The piezoelectric properties of PZT were greatly improved by the addition of PYN. The highest piezoelectric constant d31 was nearly twice that of pure PZT. 相似文献
3.
4.
《Ceramics International》2017,43(16):13233-13239
Fe3+-doped (Pb0.94Sr0.05La0.01)(Zr0.53Ti0.47)O3 (PSL(ZT)1-x-Fex) piezoelectric ceramics were prepared by the solid-state reaction method and with a variation of the Fe3+ content. When the Fe3+ content was less than 0.010, the ceramics exhibited the features of soft piezoelectric ceramics with a large remnant polarization (Pr) of 35.7 μC/cm2, a large bipolar strain of 0.22% and a high piezoelectric coefficient (d33) of 412 pC/N. The number of oxygen vacancies increased and the domain walls were pinned by the defect diploes with a further increase of the Fe3+ content. Meanwhile, the PSL(ZT)1-x-Fex ceramics showed typical hard behavior and the mechanical quality factor Qm was as high as 500. The softening-hardening transition of electrical properties was also systematically analyzed by adjusting the oxygen vacancies, the space charges and the difference between the unipolar strain and the value of d33×E. 相似文献
5.
《Journal of the European Ceramic Society》2020,40(12):3965-3973
Interactions between grain boundaries and domain walls were extensively studied in ferroelectric films and bicrystals. This knowledge, however, has not been transferred to polycrystalline ceramics, in which the grain size represents a powerful tool to tailor the electromechanical and dielectric response. Here, we relate changes in dielectric and electromechanical properties of a bulk polycrystalline Pb(Zr0.7Ti0.3)O3 to domain wall interactions with grain boundaries. Samples with grain sizes in the range of 3.9–10.4 μm were prepared and their microstructure, crystal structure, and dielectric/electromechanical properties were investigated. A decreasing grain size was accompanied by a reduction in large-signal electromechanical properties and an increase in small-signal relative permittivity. High-energy diffraction analysis revealed increasing microstrains upon decreasing the grain size, while piezoresponse force microscopy indicated an increased local coercive voltage near grain boundaries. The changes in properties were thus related to strained material volume close to the grain boundaries exhibiting reduced domain wall dynamics. 相似文献
6.
We studied the effect of porosity and pore morphology on the functional properties of Pb(Zr0.53Ti0.47)O3 (PZT) ceramics for application in high frequency ultrasound transducers. By sintering a powder mixture of PZT and polymethylmetacrylate spherical particles (1.5 and 10?μm) at 1080°C, we prepared ceramics with ~30% porosity with interconnected micrometer sized pores and with predominantly ~8?μm spherical pores. The acoustic impedance was ~15?MRa for both samples, which was lower than for the dense PZT. The attenuation coefficient α (at 2.25?MHz) was higher for ceramics with ~8?μm pores (0.96?dB?mm??1?MHz??1), in comparison to the ceramic with smaller pores (0.56?dB?mm??1?MHz??1). The high α value enables the miniaturisation of the transducer, which is crucial for medical imaging probes. The dielectric and piezoelectric coefficients, polarisation, and strain response decreased with increased porosity and decreased pore/grain size. We suggest a possible role of pore/grain size on the switching behaviour. 相似文献
7.
《Ceramics International》2016,42(10):12005-12009
The effects of small amounts of lithium fluoride sintering aid on the microstructure and dielectric properties of CaCu3Ti4O12 (CCTO) ceramics were investigated. CCTO polycrystalline ceramics with 0.5 and 1.0 mol% LiF, and without additive were prepared by solid state synthesis. Good densification (>90% of the theoretical density) was obtained for all prepared materials. Specimens without the sintering aid and sintered at 1090 °C exhibit secondary phases as an outcome of the decomposition reaction. The mean grain size is controlled by the amount of LiF in specimens containing the additive. Impedance spectroscopy measurements on CaCu3Ti4O12 ceramics evidence the electrically heterogeneous nature of this material consisting of semiconductor grains along with insulating grain boundaries. The activation energy for grain boundary conduction is lower for specimens prepared with the additive, and the electric permittivity reached 53,000 for 0.5 mol% LiF containing CCTO. 相似文献
8.
Pratibha Singh Sangeeta Singh J.K. Juneja Chandra Prakash 《Ceramics International》2009,35(8):3335-3338
The influence of Samarium substitution on the dielectric properties of modified PZT composition with representative formula [Pb1−xSmxZr0.588Ti0.392Fe0.01Nb0.01O3] system is reported. Samarium (Sm) was varied from 0 to 0.01/FU in the present system in a step of 0.0025. The samples were prepared by the traditional solid state reaction process. XRD analysis showed all the samples to be single phase with tetragonal structure. Dielectric properties were studied in detail as a function of frequency and temperature (from room temperature (RT) 30 to 400 °C). All compositions show phase transition and the transition temperature (TC) is found to decrease with increase in Sm substitution. Room temperature dielectric constant shows an increasing trend while loss improves with Sm doping. 相似文献
9.
《Ceramics International》2020,46(1):180-185
A sample of 0.83Pb(Zr0.5Ti0.5)O3-0.11Pb(Zn1/3Nb2/3)O3-0.06Pb(Ni1/3Nb2/3)O3 (PZNNT) to which MnO2 was added, with a high mechanical quality factor (Qm) and a good transduction coefficient (d33×g33), were systematically investigated. Based on the SEM analysis there existed two kinds of “secondary phases”, Rich Ti and Rich Zn phases, which arose due to the B-site substation of PZNNT-based ceramics by manganese ions. One phase was due to the Mn3+ replacing the Ti4+ to create oxygen vacancies and induce the hardening effect. Another phase was due to the Mn2+ replacing the Zn-site to stabilize the perovskite phase. When the addition of MnO2 reached the solubility limit of 1.5 mol% in the PZNNT-based ceramics, the sample showed optimal electrical properties (Qm=357, d33×g33=9859 × 10−15 m2/N, kp=0.56), which suggested its potential application for piezoelectric energy harvesting in larger field excitation environments. 相似文献
10.
《Ceramics International》2022,48(12):17046-17052
The macroscopic physical properties of functional ceramics are strongly affected by grain morphology, almost resulting from the sintering process. For a given ceramic material, it has been experimentally confirmed that the enhancement of dielectric breakdown strength Eb can largely increase energy storage density (W). An effective method to increase Eb of ceramic materials is the control of grain morphology. Herein, the (Ba0.95Sr0.05)(Zr0.2Ti0.8)O3 ceramics have been intensively investigated by different sintering techniques to improve grain morphology. Compared with single-step sintering, two-step sintering can sharply inhibit grain growth and make size distribution uniform, which is conducive to the increase in the Eb. A competitive energy storage capacity can be achieved with a high Wch of 3.78 J/cm3, a high Wdi of 3.50 J/cm3, and a high η of 92.6% by two-step sintering due to large Eb of 350 kV/cm, accompanied with good thermal stability till to 160 °C and good fatigue characteristics up to 105 cycles, indicating that two-step sintering is an effective strategy of engineering grain morphology. 相似文献
11.
《Journal of the European Ceramic Society》2020,40(13):4495-4502
AgNbO3 as a lead-free antiferroelectric material, has received widespread attention in recent years due to its promising application in the aspects of energy storage devices. However, the high remnant polarization and low breakdown strength limits its energy storage properties. In this work, Nd3+-doped AgNbO3 (Ag1−3xNdxNbO3, x=0−0.015) ceramics were prepared and a two-step sintering method was employed. The introduction of Nd3+ leads to the enhanced stability of the antiferroelectric phase, refined grain size and increased resistivity. Furthermore, by adjusting the pre-heating temperature in the two-step sintering, the homogeneity of microstructure is improved and the resistance of pre-heated samples increases by one order of magnitude compared with normally sintered samples, leading to the enhanced breakdown strength. Ag0.97Nd0.01NbO3 pre-heated at 1100 °C for 2 h exhibits promising energy storage properties, with a recoverable energy storage density of 3.2 J/cm3 and energy efficiency of 52 % under an applied electric field of 210 kV/cm. 相似文献
12.
《Journal of the European Ceramic Society》2020,40(8):2977-2988
Piezoelectric energy harvesters have become increasingly popular in the field of green energy because of the ability to convert low-frequency environmental vibrations into usable electricity. To fabricate high-performance energy harvesters, the key requirements are piezoelectric ceramics with a small grain size, of near-full density, the intended stoichiometric ratio and a high transduction coefficient. In this work, the effects of two-step sintering on the sinterability, microstructure, piezoelectric properties and energy harvesting performance of (K0.5Na0.5)NbO3 were systematically investigated. Compared with conventional single-step sintering, two-step sintering samples were of higher density, increasing from 91 % to 95 % of theoretical, reduced mean grain size, down from 17 μm to 7.5 μm, and decreased evaporation of the alkali metals. This translated into an improved piezoelectric performance (d33 ∼122 pC/N, kp ∼36 % and Qm ∼76), a higher transduction coefficient and energy conversion efficiency as well as a higher open-circuit voltage and power density. This demonstrates the potential of two-step sintering as a high through-put sintering technique for moderate-performance, pure KNN ceramics. 相似文献
13.
14.
《Ceramics International》2020,46(8):12080-12087
(1-x) Ba(Zr0.2Ti0.8)O3-x Na0.5Bi0.5TiO3 (x = 0, 10, 20 30, 40, 50 mol%) (BZTN) ceramics are prepared by the traditional solid phase method. All BZTN ceramics exhibit a pseudo-cubic BZT based perovskite structure. Both the average grain size and the relaxor ferroelectricity of BZTN ceramics gradually increase with increasing NBT content. The Wrec of 3.22 J/cm3 and η of 91.2% is obtained for the BZTN40 ceramic at 241 kV/cm. BZTN40 ceramic also exhibits good temperature stability from room temperature to 150 °C and frequency stability from 1 Hz to 100 Hz. A PD of 0.621 J/cm3 and a t0.9 of 82 ns is obtained for the BZTN40 ceramic at 120 kV/cm. BZTN ceramics show application potential in energy storage and pulse power capacitors. 相似文献
15.
Dong-Jin Shin Jinhwan Kim Jung-Hyuk Koh 《Journal of the European Ceramic Society》2018,38(13):4395-4403
In this study, we investigated (1-x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 lead-free piezoelectric ceramics for energy harvester applications. The (1-x)BZT-xBCT ceramic is a promising lead-free piezoelectric material in the field of piezoelectric energy harvesting. Piezoelectric and energy properties of (1-x)BZT-xBCT ceramics were analyzed to confirm the possibility of using them as energy-harvesting materials. Especially, the vicinity of the phase convergence region was investigated to improve their piezoelectric properties. In the phase convergence region, cubic, rhombohedral, orthorhombic, and tetragonal regions co-exist within the narrow region. Near the phase transition region between the orthorhombic and tetragonal phase, the highest piezoelectric property d33?=?464 pC/N and the highest energy density of 158.5 μJ/cm3 were observed. This output energy density of 158.5 μJ/cm3 is the recorded highest value among lead-free ceramics. We found that the optimal sintering temperature was 1475?°C and the optimal composition was BZT-0.5BCT. 相似文献
16.
Lingfang Zou Zhuan Li Zonglong Gao Fu Chen Wenjie Li Yong Yu Yimin Li Peng Xiao 《Ceramics International》2021,47(14):19328-19339
Improving the piezoelectric activity of lead zirconate titanate (PZT) ceramics is of great importance for practical applications. In this study, the influence of Pr3+ doping on the ferroelectric phase composition, microstructure, and electric properties on the A-site of (Pb1-1.5xPrx)(Zr0.52Ti0.48)O3 is extensively investigated. A dense and fine microstructural sample is obtained with the introduction of Pr3+. The results show that the morphotropic phase boundary (MPB) moves to the rhombohedral phase region. The rhombohedral and tetragonal phases exhibit an ideal coexistence in the 4 mol.% Pr3+ doped (PPZT4) samples. Lead vacancy and the reduction of the potential energy barrier are considered to be the key mechanisms for donor doping, which is upheld by the Pr3+ doping. Combining the I-E hysteresis loops with the P-E hysteresis loops, it becomes apparent that both contribution maximums of the domain switching and residual polarisation are in PPZT4. Moreover, the thermal aging resistance of PZT is improved by doping, and the temperature stability is optimised from 83% in PZT to 96% in PPZT4. Hence, an appropriate amount of Pr3+ doping can effectively improve the piezoelectric activity of PZT ceramics in the MPB area and optimise the performance stability of the material under application temperatures. 相似文献
17.
Mihail Slabki Jiang Wu Michael Weber Patrick Breckner Daniel Isaia Kentaro Nakamura Jurij Koruza 《Journal of the American Ceramic Society》2019,102(10):6008-6017
Piezoceramics are widely-used in high-power applications, whereby the material is driven in the vicinity of the resonance frequency with high electric fields. Evaluating material's performance at these conditions requires the consideration of inherent nonlinearity, anisotropy, and differences between individual vibration modes. In this work, the relation between electromechanical properties at large vibration velocity and the utilized vibration mode is investigated for a prototype hard piezoceramic. The nonlinear behavior is determined using a combined three-stage pulse drive method, which enables the analysis of resonant and antiresonant conditions and the calculation of electromechanical parameters. The deviations of coupling coefficients, compliances, and piezoelectric coefficients at high-power drive were found to be strongest for the transverse length vibration mode. Differences in the mechanical quality factors were observed only between the planar and transverse length modes, which were rationalized by the different strain distribution profiles and the contribution of different loss tensor components. In addition, the influence of the measurement configuration was investigated and a correction method is proposed. The differences between vibration modes are further confirmed by heat generation measurements under continuous drive, which revealed that the strongest heat generation appears in the radial mode, while transverse and longitudinal length modes show similar temperature increase. Piezoceramics are widely-used in high-power applications, whereby the material is driven in the vicinity of the resonance frequency with high electric fields. Evaluating material's performance at these conditions requires the consideration of inherent nonlinearity, anisotropy, and differences between individual vibration modes. In this work, the relation between electromechanical properties at large vibration velocity and the utilized vibration mode is investigated for a prototype hard piezoceramic. The nonlinear behavior is determined using a combined three-stage pulse drive method, which enables the analysis of resonant and antiresonant conditions and the calculation of electromechanical parameters. The deviations of coupling coefficients, compliances, and piezoelectric coefficients at high-power drive were found to be strongest for the transverse length vibration mode. Differences in the mechanical quality factors were observed only between the planar and transverse length modes, which were rationalized by the different strain distribution profiles and the contribution of different loss tensor components. In addition, the influence of the measurement configuration was investigated and a correction method is proposed. The differences between vibration modes are further confirmed by heat generation measurements under continuous drive, which revealed that the strongest heat generation appears in the radial mode, while transverse and longitudinal length modes show similar temperature increase. 相似文献
18.
Nguyen Chi Trung Ngo Hironari Sugiyama Buddhika Amila Kumara Sodige Juan Paulo Wiff Satoru Yamanaka Yoonho Kim Tsuneo Suzuki Masaaki Baba Masatoshi Takeda Noboru Yamada Koichi Niihara Tadachika Nakayama 《Journal of the American Ceramic Society》2023,106(1):201-212
The energy-harvesting ability of the lead-free ferroelectric Ba(Zr,Ti)O3 was investigated and greatly enhanced using the Kim novel electrothermodynamic cycle for low-temperature application. Ba(Zr,Ti)O3 was synthesized with a Zr:Ti ratio of 10:90 (BZT10) by hot-press sintering, which exhibited a mix relaxor-ferroelectric behavior. For power generation using the Kim cycle with low and high temperatures of TL = 25°C, TH = 120°C, the most optimized temperature pattern occurred for a heating time of 12.5 s and a cooling time of 22.5 s. Under these conditions, the electric field increased during the novel isodisplacement process, and the displacement variation in the isoelectric step reached the highest value and maximized the BZT10 cycle loop area. Applying these conditions while lowering TL to 20°C, an energy density ND = 504 mJ/cm3 was achieved. This value is the highest obtained energy density in a practical test for lead-free ferroelectric bulk material in the BaTiO3 family. 相似文献
19.
《Ceramics International》2016,42(13):14970-14975
The effect of MgO doping on the structural, microstructural and dielectric properties of Ba0.7Sr0.3TiO3 (BST) ceramic from the point of view of its application in microwave tunable devices has been studied. All the samples crystallize into perovskite structure. There is significant reduction in the value of loss factor with the increase in Mg-level, the dielectric constant and tunability are also reduced with the increase in Mg-level. Interestingly, the Fig. of merit of the material is found to be enhanced with increase of Mg-doping. The observed dielectric properties are explained on the basis of defect chemistry involved when Mg is doped in Ba0.7Sr0.3TiO3 ceramics. The effect of dc field on the dielectric constant and the dielectric breakdown strength of the paraelectric phase Mg doped BST ceramic samples are also studied. 相似文献
20.
《Ceramics International》2020,46(9):13159-13169
Lead-free perovskite dielectric materials for capacitors have received wide concern in recent years, but their energy storage density and efficiency still cannot meet the growing application demand for practical applications. In this work, we prepared a lead-free relaxor ferroelectric ceramic of (1-x)Bi0.47Na0.47Ba0.06TiO3-xSr(Zr0.8Nb0.16)O3, which was synthesized via a normal solid-state route. The microstructure, dielectric properties and energy storage behavior of the ceramics were explored. The ceramics can be well sintered and situated in the region where rhombohedral and tetragonal phases coexist. The addition of Sr(Zr0.8Nb0.16)O3 (SZN) significantly extends the dielectric-temperature plateau between Ts and Tm and reduces the remnant polarization Pr, but the large saturation polarization Ps is still maintained. Besides, the doping of SZN enhances the relaxation of the material and increases the dielectric breakdown strength (DBS) from 50 kV/cm (x = 0) to 100 kV/cm (x = 0.04 and 0.06). Therefore, the ceramic with x = 0.06 exhibits a high discharging efficiency (η) of 71.1% and energy density (W) of 1.56 J/cm3 at 100 kV/cm and shows the superior thermal stability with the changes in recoverable energy density (Wrec) and η of less than 10% and 30% at the temperature range of 25–180 °C and the excellent frequency stability with the variations of Wrec and η of less than 1.8% and 1% at the frequency range of 10 Hz–100 Hz. 相似文献