首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a tracking controller is formulated for a quadrotor to track a moving ground target. The quadrotor exhibits distinct hierarchical dynamics that allows its position to be controlled by its attitude. This motivates the use of backstepping control on the underactuated quadrotor. Most backstepping architecture controls the quadrotor position and attitude independently, and couples them with inverse kinematics. Inverse kinematics computes the attitude angles required to achieve a desired acceleration. However unmodeled effects are shown to cause inexact inversion resulting in tracking error. The approach proposed in this paper uses a re-formulated full state cascaded dynamics to eliminate the need for inverse kinematics in a full state backstepping control architecture. It is shown that zero steady state error is achieved in the presence of unmodeled aerodynamics effect and wind disturbance despite no integral action. In addition, a backstepping formulation is derived using contraction theory that guarantees the boundedness of state response under bounded disturbances such as wind. This improves the system performance. Numerical simulations are performed using the proposed controller to track a target moving along predefined paths and the results are compared with a benchmark controller derived using inverse kinematics. The results show that the proposed controller is able to achieve better tracking performance under unmodeled aerodynamic effects and wind disturbance as compared with the benchmark controller.  相似文献   

2.
In this paper, a constructive method is presented to design a three dimensional trajectory tracking controller that forces a quadrotor helicopter to track a bounded and sufficiently smooth reference trajectory asymptotically in the presence of constant force disturbances. The quadrotor helicopter under consideration has fewer independent thrusters than degrees of freedom to be controlled. Motivated by the vehicle's steering practices, the roll and pitch angles are regarded as virtual controls along with four control forces to fulfill the task of position and yaw angle reference tracking. To prevent position constraint violation, the barrier Lyapunov function (BLF) is employed in the vectorial backstepping procedure to guarantee that the position and attitude constraints are not violated. The backstepping procedure employs an exact and robust sliding mode differentiator of order two to facilitate the implementation of the attitude command signal without calculating the virtual control signal derivative analytically.  相似文献   

3.
针对四旋翼飞行器是一个欠驱动、强耦合、非线性系统,提出了运用反步法解决系统非线性问题,达到对飞行器快速、准确、稳定控制目的.研究了以反步法作为非线性设计工具对飞行器控制系统的设计问题,将飞行控制系统分为内外环2个子系统.建立四旋翼飞行器动力学及运动学方程,并对数学模型进行适当简化.利用反步法求解飞行器内环姿态控制律,实现对目标姿态角的稳定控制;利用比例—积分—微分(PID)作为飞行器外环位置控制律,实现对目标位置的稳定控制.搭建飞行器系统模型,进行Matlab/Simulink仿真实验,结果表明:在小角度飞行和悬停状态下,飞行器的位置与姿态精度得到了有效控制,验证了数学模型与控制律设计的准确性.  相似文献   

4.
A hard real-time implementation on a single processor of a nonlinear controller for trajectory tracking of the quadrotor helicopter is presented. An inertial measurement unit and an Optitrack positioning system provide the necessary state measurements. The nonlinear controller has been previously published, so that, this paper focuses on the details of its onboard implementation. In particular, we propose a hard real-time algorithm, a method to identify the aerodynamic characteristics of the actuators and a procedure to tune the nonlinear control gains. Flying tests are presented to illustrate the performance of the quadrotor closed loop dynamics.  相似文献   

5.
In this paper, we present an extended state observer–based robust dynamic surface trajectory tracking controller for a quadrotor unmanned aerial vehicle subject to parametric uncertainties and external disturbances. First, the original cascaded dynamics of a quadrotor unmanned aerial vehicle is formulated in a strict form with lumped disturbances to facilitate the backstepping design. Second, based on the separate outer‐ and inner‐loop control methodologies, the extended state observers are constructed to online estimate the unmeasurable velocity states and lumped disturbances existed in translational and rotational dynamics, respectively. Third, to overcome the problem of “explosion of complexity” inherent in backstepping control, the technique of dynamic surface control is utilized for trajectory tracking and attitude stabilization, and with the velocity and disturbance estimates incorporated into the dynamic surface control, a robust dynamic surface flight controller that guarantees asymptotic tracking in the presence of lumped disturbances is synthesized. In addition, the stability analysis is given, showing that the present robust controller can ensure the ultimate boundedness of all signals in the closed‐loop system and make the tracking errors arbitrarily small. Finally, comparisons and extensive simulations under different flight scenarios are performed to validate the effectiveness and superiority of the proposed scheme in accurate tracking performance and enhanced antidisturbance capability.  相似文献   

6.
Quadrotor helicopter is an unstable system subject to matched and mismatched disturbances. To stabilize the quadrotor dynamics in the presence of these disturbances, the application of a composite hierarchical anti-disturbance controller, combining a sliding mode controller and a disturbance observer, is presented in this paper. The disturbance observer is used to attenuate the effect of constant and slow time-varying disturbances. Whereas, the sliding mode controller is used to attenuate the effect of fast time-varying disturbances. In addition, sliding mode control attenuates the effect of the disturbance observer estimation errors of the constant and slow time-varying disturbances. In this approach, the upper bounds of the disturbance observer estimation errors are required instead of the disturbances’ upper bounds. The disturbance observer estimation errors are found to be bounded when the disturbance observer dynamics are asymptotically stable and the disturbance derivatives and initial disturbances are bounded. Moreover, due to the highly nonlinear nature of the quadrotor dynamics, the upper bounds of a part of the quadrotor states and disturbance estimates are required. The nonlinear terms in the rotational dynamics are considered as disturbances, part of which is mismatched. This assumption simplifies the control system design by dividing the quadrotor’s model into a position subsystem and a heading subsystem, and designing a controller for each separately. The stability analysis of the closed loop system is carried out using Lyapunov stability arguments. The effectiveness of the developed control scheme is demonstrated in simulations by applying different sources of disturbances such as wind gusts and partial actuator failure.  相似文献   

7.
邹尧  霍伟 《控制理论与应用》2015,32(10):1316-1324
针对微型无人直升机在狭窄空间中的轨迹跟踪问题,设计了一种可以限制直升机位置和速度的跟踪控制器.首先将直升机的模型简化为一个未建模的动态模型.基于简化模型利用受限反步法设计控制器,其中在位置控制回路用障碍李雅普诺夫函数代替传统的纯二次型李雅普诺夫函数,以此来限制直升机的位置和速度;用指令滤波器对反步过程中虚拟控制的导数进行估计,避免了复杂的解析计算.此外,将未建模动态和指令滤波器误差合并成有界扰动项,并设计了自适应算法对扰动的上界进行估计和补偿.稳定性分析证明了直升机的闭环跟踪误差最终一致有界,且位置和速度始终位于预设的限制集合中.仿真结果验证了该控制器的有效性.  相似文献   

8.
In this paper, the control problem for a quadrotor helicopter which is subjected to modeling uncertainties and unknown external disturbance is investigated. A new nonlinear robust control strategy is proposed. First, a nonlinear complementary filter is developed to fuse the raw data from the onboard barometer and the accelerometer to decrease the negative effects from the noise associated with the low-cost onboard sensors Then the adaptive super-twisting methodology is combined with a backstepping method to formulate the nonlinear robust controller for the quadrotor''s attitude angles and the altitude position. Lyapunov based stability analysis shows that finite time convergence is ensured for the closed-loop operation of the quadrotor''s roll angle, pitch angle, row angle and the altitude position. Real-time flight experimental results, which are performed on a quadrotor flight testbed, are included to demonstrate the good control performance of the proposed control methodology.  相似文献   

9.
针对无人直升机干扰下的鲁棒轨迹跟踪问题,设计了一种自适应反步控制方法.鉴于作用在直升机上的干扰是产生跟踪误差的主要原因,该方法的主要思想是寻求一种方法来补偿这种干扰.首先,将未建模动态如外部阵风干扰、配平误差、机身、垂尾、平尾以及其他可忽略的动态产生的力和力矩看成一种组合干扰,从而建立了一个方便反步法控制器设计的简化模型.当设计好反步法控制器后,设计了一个非线性自适应律来估计这种组合干扰,并通过将干扰估计值整合到反步控制器中,使得闭环跟踪系统的鲁棒稳定性得到了保证,即基于李雅普诺夫稳定性理论证明了所设的控制器对于干扰主动阻隔,特别是低频干扰的主动阻隔是有效的.最后,两个仿真研究验证了该方法是优于常规反步法和积分反步法的.  相似文献   

10.
In this paper, novel adaptive sliding mode dynamic controller with integrator in the loop is proposed for nonholonomic wheeled mobile robot (WMR). The modified kinematics controller is used to generate kinematics velocities of WMR which are subsequently used as the input to adaptive dynamic controller. Actuator dynamics are also derived to generate actuator voltage of WMR through torque and velocity vectors. Stability of both kinematics and dynamic controller is presented using Lyapunov stability analysis. The proposed scheme is verified and validated using computer simulations for tracking the desired trajectory of WMR. The performance of proposed scheme is compared with standard backstepping kinematics controller and classical sliding mode control. In addition, the performance is further compared with standard backstepping kinematics controller with adaptive sliding mode controller without integrator. It is shown that the proposed scheme exhibits zero steady state error, fast error convergence and robustness in the presence of continuous disturbances and uncertainties.  相似文献   

11.
针对四旋翼无人机轨迹跟踪过程中存在的参数不确定与外界干扰问题,设计一种双闭环自适应控制策略.为了降低控制器设计复杂度,根据四旋翼无人机系统的欠驱动特性将系统分成姿态内环和位置外环.在扰动观测器的基础上,利用积分型反步控制算法完成无人机位置信息在外界干扰下的稳定跟踪控制.在扰动观测器的基础上,利用自适应滑模控制算法完成无...  相似文献   

12.
In this paper, a problem of constructing a control law for a quadrotor helicopter—a fourrotor helicopter is considered. The classical design of this vehicle contains a four-way frame, at which nodes electric motors with propellers rigidly mounted on their axles. An approach to solving the problem is proposed, based on application of the method of two-level control, according to which the required control is constructed in the form of the sum of a desired control and an additional feedback stabilizing the zero solution of the system of equations in deviations from the desired motion. The complete controllability of the nonstationary linear system in deviations is strictly proved. For constructing a stabilizing feedback, a known solution of the problem on linear controller with quadratic cost function is used. The proposed approach makes it possible to develop a general numerical method for constructing a control that provides a stable motion of the quadrotor helicopter along arbitrary smooth three-dimensional trajectories.  相似文献   

13.
四旋翼无人机鲁棒自适应姿态控制   总被引:1,自引:0,他引:1  
 四旋翼无人机的姿态控制是自主飞行控制的核心,针对四旋翼姿态易受外界环境干扰和内部参数摄动等不确定性影响的问题,设计了一种鲁棒自适应反步控制器,以提高四旋翼的鲁棒性。建立了四旋翼完整的姿态运动模型,并将其转化为含有广义不确定性的多输入多输出非线性系统。根据该系统满足严格反馈的结构特点,设计了反步控制器; 针对系统中存在的外部干扰和内部参数摄动等不确定性,引入了一类鲁棒自适应函数来抵消该不确定性对系统的影响; 采用非线性跟踪微分器估计虚拟控制量的微分信号,减小了反步控制器设计中普遍存在的“计算膨胀”问题; 通过构造Lyapunov 函数证明闭环系统是稳定且指数收敛的。仿真结果表明,所设计控制器具有良好的控制效果和鲁棒性。  相似文献   

14.
This paper presents a robust nonlinear controller design approach for uncertain quadrotors to implement trajectory tracking missions. The quaternion representation is applied to describe the rotational dynamics in order to avoid the singularity problem existing in the Euler angle representation. A nonlinear robust controller is proposed, which consists of an attitude controller to stabilize the rotational motions and a position controller to control translational motions. The quadrotor dynamics involves uncertainties such as parameter uncertainties, nonlinearities, and external disturbances and their effects on closed-loop control system can be guaranteed to be restrained. Simulation results on the quadrotor demonstrate the effectiveness of the designed control approach.  相似文献   

15.
Flight controllers for micro-air UAVs are generally designed using proportional-integral-derivative (PID) methods, where the tuning of gains is difficult and time-consuming, and performance is not guaranteed. In this paper, we develop a rigorous method based on the sliding mode analysis and nonlinear backstepping to design a PID controller with guaranteed performance. This technique provides the structure and gains for the PID controller, such that a robust and fast response of the UAV (unmanned aerial vehicle) for trajectory tracking is achieved. First, the second-order sliding variable errors are used in a rigorous nonlinear backstepping design to obtain guaranteed performance for the nonlinear UAV dynamics. Then, using a small angle approximation and rigorous geometric manipulations, this nonlinear design is converted into a PID controller whose structure is naturally determined through the backstepping procedure. PID gains that guarantee robust UAV performance are finally computed from the sliding mode gains and from stabilizing gains for tracking error dynamics. We prove that the desired Euler angles of the inner attitude controller loop are related to the dynamics of the outer backstepping tracker loop by inverse kinematics, which provides a seamless connection with existing built-in UAV attitude controllers. We implement the proposed method on actual UAV, and experimental flight tests prove the validity of these algorithms. It is seen that our PID design procedure yields tighter UAV performance than an existing popular PID control technique.  相似文献   

16.
This paper deals with the trajectory tracking problem of a six‐degree of freedom (6‐DOF) quadrotor unmanned aerial vehicle (UAV). The problem of simplified kinematics based on Euler angles is analyzed and the modified Rodrigues parameters (MRPs) technique is introduced to model the rotational dynamics of the rigid body. A nonlinear system error model is established based on the trajectory tracking problem, and, due to the coupling property between the translational and rotational dynamics, we divide the complete closed‐loop system into two reduced‐order subsystems and a coupling term. The Rodrigues theorem is applied to analyze the internal connections between the coupling term and MRPs. Therefore, the global stability conclusions, by which the trajectory tracking controller of the quadrotor UAV could be designed based on the subsystem directly in future works, are proved based on several assumptions of the subsystems. Thereafter, the controllers, using the backstepping approach and nonlinear disturbance observer/sliding mode control approach, which stabilize the quadrotor UAV globally ‐exponentially and globally uniformly bounded, are proposed based on the stability theorem proofs mentioned above. Numerical simulations are provided to show that the theoretical conclusions and the controller proposed are effective.  相似文献   

17.
王芳  高雅丽  张政  华长春 《控制与决策》2021,36(5):1059-1068
针对外界干扰和输出误差约束条件下的四旋翼无人机的跟踪控制问题,提出预定性能反步跟踪控制策略.首先,将四旋翼无人机动力学模型转换为带有外界干扰的严反馈形式;然后,利用反步法设计控制器,通过引入障碍Lyapunov函数保证跟踪误差的预定性能,设计干扰观测器对外界干扰进行估计,并通过滤波器估计姿态子系统中部分虚拟控制输入的导...  相似文献   

18.
The use of unmanned aerial vehicles (UAVs) for military, scientific, and civilian sectors are increasing drastically in recent years. This study presents algorithms for the visual-servo control of an UAV, in which a quadrotor helicopter has been stabilized with visual information through the control loop. Unlike previous study that use pose estimation approach which is time consuming and subject to various errors, the visual-servo control is more reliable and fast. The method requires a camera on-board the vehicle, which is already available on various UAV systems. The UAV with a camera behaves like an eye-in-hand visual servoing system. In this study the controller was designed by using two different approaches; image based visual servo control method and hybrid visual servo control method. Various simulations are developed on Matlab, in which the quadrotor aerial vehicle has been visual-servo controlled. In order to show the effectiveness of the algorithms, experiments were performed on a model quadrotor UAV, which suggest successful performance.  相似文献   

19.
Parametric uncertainties and coupled nonlinear dynamics are inherent in quadrotor configuration and infer adaptive nonlinear approaches to be used for flight control system. Numerous adaptive nonlinear and intelligent control techniques, which have been reported in the literature for designing quadrotor flight controller by various researchers, are investigated in this paper. As a priori, each conventional nonlinear control technique is discussed broadly and then its adaptive/observer based augmentation is conferred along with all possible variants. Among conventional nonlinear control approaches, feedback linearization, backstepping, sliding mode, and model predictive control, are studied. Intelligent control approaches incorporating fuzzy logic and neural networks are also discussed. In addition to adaption based parametric uncertainty handling, various other aspects of each control technique regarding stability, disturbance rejection, response time, asymptotic, exponential and finite time convergence etc., are discussed in sufficient depth. The contribution of this paper is the provision of detailed and in depth discussion on quadrotor nonlinear control approaches to the flight control designers.  相似文献   

20.
考虑到四旋翼飞行器的传统内外环控制策略依赖时标分离假设,稳定性分析复杂,并且控制参数选取困难的缺点,提出了一种与传统内外环控制策略不同的轨迹跟踪控制器;首先将四旋翼飞行器数学模型进行相应的变换,以分解为高度、偏航角和纵横向三个级联的子系统,再使用终端滑模控制方法设计高度和偏航角子系统的控制器,使两个子系统的状态误差可以在有限时间内收敛到原点,之后基于变量非线性变换设计纵横向子系统的控制器,分析了闭环系统稳定性,证明了所设计的轨迹跟踪控制器可以保证闭环系统跟踪误差渐近稳定到原点,最后仿真实验的结果验证了所设计的控制器的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号