首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents a comprehensive experimental study of various thermophysical properties of an azeotropic refrigerant mixture of 65 mass% R365mfc (1,1,1,3,3-pentafluorobutane) and 35 mass% Galden? HT 55 (perfluoropolyether). Light scattering from bulk fluids has been applied for measuring both the thermal diffusivity and the speed of sound in the liquid and vapor phases under saturation conditions, between 293 K and the liquid–vapor critical point at 450.7 K. Furthermore, the speed of sound has been measured for the superheated-vapor phase along nine isotherms, between 393 and 523 K and up to a maximum pressure of about 2.5 MPa. For temperatures between 253 and 413 K, light scattering by surface waves on a horizontal liquid–vapor interface has been used for simultaneous determination of the surface tension and kinematic viscosity of the liquid phase. With light scattering techniques, uncertainties of less than ±2.0%, ±0.5%, ±1.5%, and ±1.5% have been achieved for the thermal diffusivity, sound speed, kinematic viscosity, and surface tension, respectively. In addition to vapor-pressure measurements between 304 and 448 K, the density was measured between 273 and 443 K using a vibrating-tube method. Here, measurements have been performed in the compressed- and saturated-liquid phases with uncertainties of ±0.3% and ±0.1%, respectively, as well as for the superheated vapor up to a maximum pressure of about 3 MPa with an uncertainty between ±0.3% and ±3%. Critical-point parameters were derived by combining the data obtained by different techniques.  相似文献   

2.
This paper presents an experimental study on various thermophysical properties of a new fluoroalkane, 1,1,1,3,3-pentafluorobutane (R365mfc). The thermal conductivity of R365mfc was measured in the liquid phase near saturation conditions at temperatures between 263 and 333 K using a parallel plate instrument with an uncertainty of less than ±5%. For the measurement of the saturated liquid density between 273 and 353 K, a vibrating tube instrument was used. The uncertainty of the density measurements is less than ±0.1%. In addition, experimental data have been obtained for R365mfc under saturation conditions over a wide temperature range from about 253 to 460 K using light scattering techniques. Light scattering from the bulk fluid has been applied for measuring both the thermal diffusivity and the sound speed in the liquid and vapor phases. Light scattering by surface waves on a horizontal liquid–vapor interface has been used for the simultaneous determination of the surface tension and kinematic viscosity of the liquid phase. With the light scattering techniques, uncertainties of less than ±1.0, ±0.5, ±1.0, and ±1.2% have been achieved for the thermal diffusivity, the sound speed, the kinematic viscosity, and the surface tension, respectively.  相似文献   

3.
Zinc oxide (ZnO) nanorods were grown on polyethersulfone substrates with a seed layer by hydrothermal synthesis. The effects of the growth temperature and duration on the structural and optical properties of the ZnO nanorods were investigated by X-ray diffraction, field emission scanning electron microscope and photoluminescence measurements. Improvement of the structural properties was confirmed when the ZnO nanorods were grown at a moderate thermal energy. Thermal energies that were too high or too low resulted in structural degradation: low thermal energies did not provide enough energy for the ZnO growth, and high thermal energies contributed to improper growth by creating an uncommon flake-like structure. Photoluminescence measurements showed that the near-band-edge emission to deep-level emission peak ratio increases with increasing growth temperature at growth duration of 5 h.  相似文献   

4.
离心泵流噪声实验研究   总被引:1,自引:0,他引:1  
搭建了离心泵流噪声测试系统,并对离心泵的流噪声进行实验研究。利用水听器测量了原型叶轮和四种改型叶轮在不同转速下的流噪声,发现水 泵流噪声随着转速的增加而增加,随轮舌间隙的减小而增加。实验结果还表明,水泵下游的流噪声声压级要高于上游。观察水泵两端声压级差随转速以 及叶轮半径的变化关系,并探讨其产生的原因。  相似文献   

5.
The National Metrology Institute of Japan (NMIJ) in AIST has investigated the laser flash method in order to establish a thermal diffusivity standard for solid materials above room temperature. A uniform pulse-heating technique, fast infrared thermometry, and a new data analysis method were developed in order to reduce the uncertainty in thermal diffusivity measurements. The homogeneity and stability of candidate reference materials such as isotropic graphite were tested to confirm their qualification as thermal diffusivity reference materials. Since graphite is not transparent to both the heating laser beam and infrared light for thermometry, the laser flash method can be applied to graphite without black coatings. Thermal diffusivity values of these specimens with different thicknesses, were measured with changing heating laser pulse energies. A unique thermal diffusivity value can be determined for homogeneous materials independent of the specimen thickness, by extrapolating to zero heating laser pulse energy on the plot of apparent thermal diffusivity values measured with the laser flash method as a function of heating laser pulse energy.Paper presented at the Fifteenth Symposium on Thermophysical Properties, June 22--27, 2003, Boulder, Colorado, U.S.A.  相似文献   

6.
在构建的汽车水泵总成半消声室噪声测试系统中,针对汽车水泵的工作噪声特性,确立了企业水泵总成噪声测试规范,用于评价汽车水泵总成件的噪声性能。测试表明:正常水泵工作噪声声压谱在400 Hz~10 kHz范围内呈现高低两个单频峰值结构噪声源,高转速下水泵主要噪声源为宽频涡流噪声。转速和防冻液温度对工作噪声影响较大,低速、高温工况下的工作噪声应为水泵噪声主要质量控制点。水泵工作噪声合格性评判除包括稳态工作转速下测量表面总声功率和声功率谱外,还需控制其提速过程中的总声功率,以防止结构共振噪声。  相似文献   

7.
In this paper, the thermal conductivity and thermal diffusivity of four kinds of polymer melts were measured by using the transient short-hot-wire method. This method was developed from the hot-wire technique and is based on two-dimensional numerical solutions of unsteady heat conduction from a wire with the same length-to-diameter ratio and boundary conditions as those in the actual experiments. The present method is particularly suitable for measurements of molten polymers where natural convection effects can be ignored due to their high viscosities. The results have shown that the present method can be used to measure the thermal conductivity and thermal diffusivity of molten polymers within uncertainties of 3 and 6%, respectively. Further, the thermal conductivity and thermal diffusivity of solidified samples were also measured and discussed.  相似文献   

8.
There is a need to obtain highly reliable values of thermophysical properties. The thermal conductivity of solids is often calculated from the thermal diffusivity, specific heat, and density, respectively, measured by the laser-flash method, differential scanning calorimetry, and Archimedes’ method. The laser-flash method is one of the most well-known methods for measuring the thermal diffusivity of solids above room temperature. This method is very convenient to measure the thermal diffusivity without contact in a short time. On the other hand, it is considered as an absolute reference measurement method, in particular, because only measurements of basic quantities such as time, temperature, length, and electrical quantities are required, and because the uncertainty of measurement can be analytically evaluated. However, it could be difficult in some cases to obtain reliable thermal-diffusivity values. The measurement results can indeed depend on experimental conditions; in particular, the pulse heating energy. A procedure to obtain the intrinsic thermal-diffusivity value was proposed by National Metrology Institute of Japan (NMIJ). Here, “intrinsic” means unique for the material, independent of measurement conditions. In this method, apparent thermal-diffusivity values are first measured by changing the pulse heating energy at the same test temperature. Then, the intrinsic thermal diffusivity is determined by extrapolating these apparent thermal diffusivities to a zero energy pulse. In order to verify and examine the applicability of the procedure for intrinsic thermal-diffusivity measurements, we have measured the thermal diffusivity of some materials (metals, ceramics) using the laser-flash method with this extrapolation procedure. NMIJ and Laboratoire National de Metrologie et d’essais (LNE) have laser-flash thermal-diffusivity measurement systems that are traceable to SI units. The thermal diffusivity measured by NMIJ and LNE on four materials shows good agreement, although they used different measurement systems and different analysis methods of the temperature-rise curve. Experimental verification on the procedure was carried out using the measured results. Some problems and considered solutions for laser-flash thermal-diffusivity measurements are discussed.  相似文献   

9.
At high-energy particle accelerators, area monitoring needs to be performed in a wide range of neutron energies. In principle, neutrons occur from thermal energies up to the energy of the accelerated ions, which is for the present GSI (Gesellschaft für Schwerionenforschung) accelerator facility approximately 1-2 GeV per nucleon. There are no passive dosemeters available, which are designed for the use at high-energy accelerators. At GSI, a neutron dosemeter was developed, which is suitable for the measurement of high-energy neutron radiation by the insertion of a lead layer around Thermoluminescence (TL) detection elements (pairs of TL 600/700) at the centre of the dosemeter. The design of the sphere was derived from the construction of the extended range rem-counters for the measurement of ambient dose equivalent H(10). In this work, the dosemeter fluence response was measured in the quasi-monoenergetic neutron fields of the accelerator facility of the PTB in Braunschweig and in the thermal neutron field of the GKSS research reactor FRG-1 in Geesthacht. For the accelerator measurements, the reactions (7)Li(p,n)(7)Be, (3)H(p,n)(3)He and (2)H(d,n)(3)He were used to produce neutron fields with energy peaks between 144 keV and 19 MeV. The measured fluence responses are 27% too low for thermal energies and show an agreement with approximately 14% for the accelerator produced neutron fields related to the computed fluence responses (MCNP, FLUKA calculations). The measured as well as the computed fluence responses of the dosemeter are compared with the corresponding conversion coefficients.  相似文献   

10.
针对小型内燃机机油泵齿轮异响,对右盖异响声信号进行频谱分析和包络分析,识别异响频率,然后通过声学互动滤波技术对不易区分的异响频率进行再次识别,结果显示:机油泵异响频率并没有体现在齿轮啮合频率上,而是存在于多个高频段,随着转速的增加,异响频率不变,能量逐渐增大.然后运用声强法结合内燃机顶面和右侧面声强分布图,对内燃机声信...  相似文献   

11.
The application of polarization spectroscopy (PS) to detect atomic species in an atmospheric pressure welding plasma has been demonstrated. PS spectra of Na atoms, seeded in the shielding gas flow of a gas tungsten arc welding (GTAW) plasma, are presented at different pump beam energies. The nature of the PS technique was found to be very efficient in suppressing the high background emission associated with the welding plasma. The PS spectral profiles appear to be Lorentzian and Lorentzian cubed for high and low pump beam energy, respectively. The effect of beam steering, due to the thermal gradient in the interaction plasma zone, was addressed. It was found that there is 2% unavoidable error in the detectable PS signal.  相似文献   

12.
对高温气冷堆堆芯温度的可靠测量是目前的技术难题之一。传统温度计依靠实验室标定的材料特性与温度的关系进行测温,然而,长期暴露在高温、高辐照环境中,其测温材料的性质会发生改变且得不到及时校准,温度传感器易发生漂移甚至失效。气体声学温度计通过测量单原子气体的声速可以直接获得热力学温度;由于气冷堆内氦气介质相对稳定,利用氦气声速获得温度具有较高的可靠性。针对实用氦气声学温度计开展了初步研究,基于圆柱声学共鸣法设计了实用声学温度计测试系统,采用声波导管声学传感器测量了488 K至806 K圆柱共鸣腔内氦气的声学共振频率,修正了热边界层和粘性边界层的影响;基于量子力学从头算得到的氦气声学维里状态方程,获得了热力学温度。对氦气共振频率的测量相对标准偏差小于0. 07%,温度测量的信噪比可满足需求,声学温度计与热电偶测温结果差异小于1%。研究结果为未来持续开展极端环境下气体声学温度计的应用研究提供了支持。  相似文献   

13.
为降低某型重型卡车怠速噪声,建立驾驶室声-振耦合有限元模型,测试驾驶室四个悬置点被动侧加速度数据,以此作为仿真激励载荷计算驾驶室司机耳旁声压,仿真与试验结果具有较高的一致性.针对怠速工况32 Hz、64 Hz和96 Hz峰值频率,计算各频率的模态参与因子,对模态参与因子较高的模态阶次进行叠加,获取各峰值频率对应的模态应...  相似文献   

14.
A dilatometric method is presented, suitable to obtain both thermal diffusivity and conductivity of low-conducting solids with a low expansion coefficient. The repeatibility of the measurements of thermal conductivity is 3%, whereas that for diffusivity is 5 %. Data for fused silica at room temperature are given, consistent with those reported in the literature. Since the method is based on detecting the thermal expansion of a copper disk in thermal contact with the specimen, its range of applicability is linked to the sensitivity by which the dilation of copper can be measured: no difficulty arises between liquid nitrogen and 1000°C.  相似文献   

15.
Magnesium alloys have been widely used in recent years as lightweight structural materials in the manufacturing of automobiles, airplanes, and portable computers. Magnesium alloys have extremely low density (as low as 1738 kg · m?3) and high rigidity, which makes them suitable for such applications. In this study, the thermal conductivity of two different magnesium alloys made by twin-roll casting was investigated using the laser-flash technique and differential scanning calorimetry for thermal diffusivity and specific heat capacity measurements, respectively. The thermal diffusivity of the magnesium alloys, AZ31 and AZ61, was measured over the temperature range from ?125 °C to 400 °C. The alloys AZ31 and AZ61 are composed of magnesium, aluminum, and zinc. The thermal conductivity gradually increased with temperature. The densities of AZ31 and AZ61 were 1754 kg · m?3 and 1777 kg · m?3, respectively. The thermal conductivity of AZ31 was about 25 % higher than that of AZ61, and this is attributed to the amount of precipitation.  相似文献   

16.
Using laser-induced thermal acoustics, we demonstrate nonintrusive and remote sound-speed and temperature measurements in liquid water. Unsteady thermal gradients in the water sample produce fast, random laser beam misalignments, which are the primary source of uncertainty in these measurements. For water temperatures over the range 10 degrees C to 45 degrees C, the precision of a single 300-ns-duration measurement varies from +/-1 to +/-16.5 m/s for sound speed and from +/-0.3 degrees C to +/-9.5 degrees C for temperature. Averaging over 10 s (100 laser pulses) yields accuracies of +/-0.64 m/s and +/-0.45 degrees C for sound speed and temperature, respectively.  相似文献   

17.
Comparative hydrogen diffusivity measurements made in 0.1 M NaOH for Armco iron and two Fe-Cr alloys have shown a significant superiority of an alternating current (AC) technique over the direct current (DC) one. Based on the phase difference between the input and the output current recorded for 0.1 cm thick membranes at frequencies ranging from 10 to 40 mHz, the lattice diffusivities of hydrogen could be determined in all the three materials. The hydrogen diffusivity values measured at room temperature were 6.2x10−5, 5.5x10−5 and 2.8x10−5 cm2/s for annealed Armco iron, Fe-3Cr and Fe-5Cr alloy respectively. From the latter two values the Gibbs free energy of binding H atoms to Cr atoms was calculated. Depending upon the calculation method, the AG values ranged from −9.3 to −14.4 kJ/mol. At frequencies lower than 10 mHz and in experiments carried out with 0.03cm thick membranes, inaccurate, namely too low diffusivity values were obtained. This was mainly caused by surface impediments on the entry side of membranes. In contrast with AC tests, all DC measurements were affected by spurious effects which could not be eliminated by coating the entry side of membranes with a thin layer of palladium. The effect of surface barriers on diffusivity measurements is discussed.  相似文献   

18.
With the use of a graphite thermal conductivity standard it is demonstrated that optical detector non-linearity, coupled with excessive laser pulse energies, is primarily responsible for the anomalous specimen size dependence of the thermal diffusivity measured by the laser-pulse technique. High laser pulse energies also result in an anomalous positive temperature dependence for thin specimens near room temperature, in contrast to the expected negative temperature dependence. Using moderately thick specimens and attenuated laser pulses yields excellent agreement with thermal diffusivity calculated from standard thermal conductivity data.  相似文献   

19.
The isobaric ideal-gas heat capacity for HFO-1234yf, which is expected to be one of the best alternative refrigerants for HFC-134a, was determined on the basis of speed-of-sound measurements in the gaseous phase. The speed of sound was measured by means of the acoustic resonance method using a spherical cavity. The resonance frequency in the spherical cavity containing the sample gas was measured to determine the speed of sound. After correcting for some effects such as the thermal boundary layer and deformation of the cavity on the resonance frequency, the speed of sound was obtained with a relative uncertainty of 0.01 %. Using the measured speed-of-sound data, the acoustic-virial equation was formulated and the isobaric ideal-gas heat capacity was determined with a relative uncertainty of 0.1 %. A temperature correlation function of the isobaric ideal-gas heat capacity for HFO-1234yf was also developed.  相似文献   

20.
The millisecond heat dissipation of pump energy in polymeric, solid-state dye lasers has been studied with photothermal deflection spectroscopy (PTDS) to determine the contribution of that process to photodegradation of the active material. The samples were solutions of Rhodamine 6G in 2-hydroxyethyl methacrylate copolymerized with various amounts of methyl methacrylate or ethylene glycol dimethylacrylate to change the microstructure properties of the matrix. Values of the thermal diffusivity measured with PTDS were in the range 0.6-1.1 x 10(-3) cm(2) s(-1) for all the compositions studied here. A comparison of these values with previous optical data on lasing efficiency and photostability for the same samples indicates that the macroscopic rate of thermal diffusion is not the key factor that limits the efficiency and stability of these lasers, at least for low pump repetition rates (<1 Hz).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号