首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高速下运行的螺旋槽干气密封,存在较大的离心力作用,由碳化硅等脆性材料制成的旋转环可能破裂,造成密封失效,甚至危害到主机。基于弹性力学理论方法和数值模拟方法,考察旋转密封环在离心力作用下的应力分布,并给出具体的案例。结果表明:数值分析方法与弹性力学理论方法得到的结果接近;旋转环径向应力随着半径的增大,呈先增大后减小的趋势,而切向应力在内径处最大,随半径增加而减小;径向和切向应力均随着角速度的增加而增大;由于切向应力远大于径向应力,强度校核时主要针对切向应力;当切向最大应力超过其强度极限时,认为密封旋转环即产生裂纹或断裂,从而失效。  相似文献   

2.
采用NiTi合金材料设计一种用于压缩扩张式的封隔器的新型金属密封元件,建立密封元件及其组件的数值模型;提出采用最大应力、坐封力和接触应力对密封元件密封性能进行评价,并分析结构参数变化对其密封性能的影响规律。结果表明:最大应力随膨胀环半径和拱形半径单调增加,随承压环宽度、拱形厚度和卸载槽半径先减小再增大;坐封力随承压环宽度、膨胀环半径、拱形半径和拱形厚度单调增加,随卸载槽半径单调减小;接触应力随承压环宽度、膨胀环半径和拱形厚度非线性增大,随拱形半径和卸载槽半径非线性减小。拱形半径和拱形厚度对密封元件密封性能影响较为显著,且适当减小拱形半径或增大拱形厚度可提高其密封性能。  相似文献   

3.
对于机械密封,一般只在高压、高速等情况下,才对动、静环等主要零件进行强度校核,因而有关这方面的文献资料很少。本文试图在这里作些探讨。一、空心等厚度旋转圆盘的应力状态和基本计算公式为求出高速旋转时的圆盘径向应力和切向应力的大小并找出分布规律,从圆盘上切出一块微元体,由弹性力学按位移解的方法,即以  相似文献   

4.
基于Hertz理论的深沟球轴承动态接触分析   总被引:1,自引:0,他引:1  
考虑深沟球轴承径向游隙、离心力等因素,在Hertz理论基础上提出一种分析计算深沟球轴承在径向载荷作用下的动态弹性变形量与动载荷分布的方法;并分析径向载荷、径向游隙对深沟球轴承动态弹性变形量与动载荷的作用规律。发现随着径向载荷的增大,轴承的承载区、最大动态弹性变形量及动载荷相应增大;随着径向游隙的增大,最大动态弹性变形量与动载荷也随之增大,而其承载区减小。对于按照动载荷能力计算深沟球轴承的许用载荷以及估计轴承弹性变形量具有一定工程意义。  相似文献   

5.
由于初始过盈量和介质压力的作用,井下流量控制阀径向金属密封唇部的应力和应变梯度变化很大,很容易发生塑性变形。为研究径向金属密封唇部接触力学行为,提出径向金属密封唇部的圆弧结构,基于接触力学建立径向金属密封唇部轴对称结构的圆弧-平面接触模型,得出径向金属密封唇部结构接触力学参数的理论关系式,并基于有限元方法进行验证。径向金属密封唇部接触力学参数的理论解与数值解相符,接触宽度、最大接触应力、初始过盈量和平均接触应力的平均相对误差分别为8.86%、6.96%、8.88%和4.33%,满足工程设计要求。研究表明:径向金属密封唇部的最大接触应力与初始过盈量、径向金属密封唇部径向厚度和轴向厚度成正比,与径向金属密封唇部圆弧半径成反比,因此可通过增加初始过盈量、径向金属密封唇部径向厚度和轴向厚度来增加径向金属密封唇部的最大接触应力。研究结果为井下流量控制阀径向金属密封的设计提供了理论指导。  相似文献   

6.
考虑温度的影响,建立浮环密封力学特性流固热耦合数值求解模型,在验证计算方法准确性的基础上,研究浮环密封的流场特性,以及石墨烯、石墨、铝合金以及碳化硅4种材料的浮环密封在不同进口压力、温度时的力学特性。结果表明:浮环密封在偏心时,由于楔形间隙的存在,气流经过这种结构产生流体动压效应,在较薄的流体域一侧形成局部高压区,较厚的一侧压力无明显变化,而温度沿轴向方向逐级升高,且偏心率越大,偏心位置的温度越大;浮环密封流体域温度随着进口压力的升高而降低,因温度影响材料的属性,使得不同材料的浮环密封结构对温度会很敏感;不同材料浮环密封的变形量随进口压力的增加而减小,应变也随着进口压力的增加而减小;4种材料浮环密封的变形量与应力均随着进口温度的增加而增大。  相似文献   

7.
为探究驱动套筒位移载荷对密封体外凸缘接触应力的影响,构建密封总成力学模型,采用该模型可以直观地描述密封总成的受力情况。利用ANSYS有限元分析软件,研究不同位移载荷对密封总成外凸缘接触应力的影响。研究结果表明:当环槽宽度、外凸缘半径不变时,接触应力随着过盈量的增大而增大;当环槽宽度、过盈量不变,外凸缘半径为3.5 mm时,接触应力达到最小值;在相同外凸缘半径条件下,接触应力随着位移载荷的增大而增大,且增幅有上升的趋势;外凸缘半径、过盈量不变时,接触应力随着环槽宽度的增大逐渐减小,减幅相对较小;环槽宽度相同时,接触应力随位移载荷的增大而均匀增大。研究结果可为密封总成结构的设计和位移载荷的确定提供理论指导。  相似文献   

8.
研究离心力对高速气膜密封动环变形的影响。利用ANSYS121计算高速工况下气膜密封动环在考虑离心力与忽略离心力2种情况下的力变形及热力耦合变形,对比2种情况下动环的总变形值、端面轴向变形以及端面锥度等。结果表明:忽略离心作用时动环力变形和热力耦合变形数值偏小,误差为1648%~3753%;离心作用对动环端面轴向变形的影响在外径侧更为明显,同时使动环端面的平均径向锥度由发散的负锥度变为收敛的正锥度;忽略离心作用时端面变形误差沿径向增大,且随转速增加而增大;在高速工况下动环力变形及热力耦合变形的计算中,离心作用不容忽略。  相似文献   

9.
研究离心力对高速气膜密封动环变形的影响。利用ANSYS12.1计算高速工况下气膜密封动环在考虑离心力与忽略离心力2种情况下的力变形及热力耦合变形,对比2种情况下动环的总变形值、端面轴向变形以及端面锥度等。结果表明:忽略离心作用时动环力变形和热力耦合变形数值偏小,误差为16.48%~37.53%;离心作用对动环端面轴向变形的影响在外径侧更为明显,同时使动环端面的平均径向锥度由发散的负锥度变为收敛的正锥度;忽略离心作用时端面变形误差沿径向增大,且随转速增加而增大;在高速工况下动环力变形及热力耦合变形的计算中,离心作用不容忽略。  相似文献   

10.
借助ANSYS分析影响中间旋转环式机械密封性能的关键结构参数,结果表明,静环和动环的伸出长度对密封性能的影响很小,中间环厚度和密封面宽度对密封性能的影响较大,且中间环厚度及密封面宽度对密封性能的影响是相互独立的;中间环厚度增大时,最高温度和最大等效应力减小,但最大接触压力和泄漏量增大;密封面宽度增大时,最高温度、最大等效应力和泄漏量增加,但最大接触压力减小。对密封环结构进行优化,得出最佳的动静环伸出长度、中间环厚度和密封面宽度,优化后机械密封的最高温度、最大等效应力、最大接触压力下降,对机械密封的运转更为有利。  相似文献   

11.
波形弹簧在航空航天机械密封等精密且紧凑的结构中发挥着重要作用。除刚度和弹簧力外,恒刚度极限、给定压缩量下的最大等效应力和最大径向变形等承载特性也影响着波形弹簧性能。采用接触非线性求解方法,分析外径、波厚、波宽和波高等结构参数对承载特性的影响。为了设计方便,提出并推导最大径向变形量的计算公式,利用试验和数值分析验证公式准确性。采用正交分析方法,得到承载特性的敏感因子。研究结果表明,恒刚度极限随着外径、波厚的增加而增加,随着波宽、波高的增加而减小;最大等效应力大小随着波宽、波厚的增加而增加,随着外径、波高的增加而减小;最大径向变形量随着外径的增加而减小,随着波高的增加而增加。  相似文献   

12.
借助ANSYS分析影响中间旋转环式机械密封性能的关键结构参数,结果表明,静环和动环的伸出长度对密封性能的影响很小,中间环厚度和密封面宽度对密封性能的影响较大,且中间环厚度及密封面宽度对密封性能的影响是相互独立的;中间环厚度增大时,最高温度和最大等效应力减小,但最大接触压力和泄漏量增大;密封面宽度增大时,最高温度、最大等效应力和泄漏量增加,但最大接触压力减小。对密封环结构进行优化,得出最佳的动静环伸出长度、中间环厚度和密封面宽度,优化后机械密封的最高温度、最大等效应力、最大接触压力下降,对机械密封的运转更为有利。  相似文献   

13.
张武  刘凯  崔亚辉  原园  赵桐 《中国机械工程》2012,(21):2535-2541
基于弹性力学理论,建立了金属带式无级变速器钢带环伸长模型。在圆弧段上,钢带环被简化为组合薄壁圆筒模型,在直线段上被简化为单向拉伸模型。模型计算结果显示:随着传动比的增大,应力应变在主动轮上不断增大,在从动轮上先减小后增大;径向位移在主动轮上先减小后增大,在从动轮上不断增大;当传动比一定时,最内层钢带环的应力应变和径向位移最大,最外层最小;钢带环总的伸长量随着传动比的增大而增大,但当传动比为1时有所减小;钢带环线应变范围是0.04%~0.08%。功率损失分析表明:钢带环应变能功率损失范围为27.15~86.73W,当传动比为1时,总功率损失为34.85W。  相似文献   

14.
采用有限差分方法,基于对螺旋槽端面气膜压力分布、流速分布和泄漏率变化的数值计算分析,探讨低压上游泵送螺旋槽气体端面密封实现被密封介质零泄漏的作用机制和变化规律。结果表明,螺旋槽上游泵送作用可在高压侧形成周向封闭的高于密封压力的高压流体环带,阻止被密封介质进入密封间隙,实现被密封高压介质的零泄漏,形成密封介质的完全的反向泄漏;泄漏率随转速、槽数和膜厚的增加先减小后增大,随槽深、螺旋角和槽台宽比的增加先增大后减小,随槽根半径增加而减小;当转速、膜厚和槽数达到一定值时,泄漏方向会发生改变;开启力随转速和槽数增加而增大,随着膜厚的增大而减小,随槽深、螺旋角、槽台宽比和槽根半径的增加呈先增大后减小的趋势。  相似文献   

15.
为了分析液环泵内非稳态气液两相流引起的转子结构响应特性,基于数值模拟与试验测试相结合的方法,对液环泵转子部件进行流固耦合应力应变分析,分析了叶轮不同叶片的应力及变形量分布特征、旋转角引起的非稳态特性、转子部件的模态特性。结果表明:当叶片尖部与壳体内壁距离最小时,其最大等效应力为最大值,随着旋转角的增大,叶片的最大等效应力先减小后增大,叶片的最大变形量随着转角与最大等效应力的变化趋势完全一致,当α=0°,Qm=0.05 kg/s时,叶片最大变形量与最大等效应力分别为1.381 mm、180.96 MPa;叶轮沿圆周方向18枚叶片上的最大应力分布各不相同,且随着叶轮旋转角的逐渐增大,叶片的最大变形量整体上先减小后增大;叶片上的变形量分布沿径向由轮毂到叶尖近似呈线性逐渐增大,应力沿径向方向先急剧增加后缓慢减少,且在0.1r2位置处达到最大值。研究结果可为液环泵的优化设计提供参考。  相似文献   

16.
为对比不同结构弹性金属密封环的力学特性,建立弹性金属密封环力学特性数值模型,在验证数值模型准确性的基础上,对比分析O形、C形、U形和W形4种结构密封环的变形特性、轴向刚度和回弹性能,并分析进出口压差、温度和结构形式对轴向刚度的影响。研究结果表明:在压缩复位工况下,U形和W形环具有良好的回弹性能,C形环的回弹性能适中,而O形环的回弹性能较差;在高温高压工况下,弹性金属密封环轴向刚度随着温度的增加而减小,进出口压差对弹性金属密封环轴向刚度的影响不大,4种结构密封环的轴向刚度由大至小依次为O形、C形、W形和U形;在相同压缩量条件下,高温高压工况相比于压缩复位工况,弹性金属密封环的最大应力值更小,但应力值超过屈服强度的区域更大,结构更容易失效。通过对比4种结构密封环发现,O形环适用于高载荷低回弹的工况,U形和W形环适用于低载荷高回弹的工况,而C形环的性能适中。  相似文献   

17.
Yx形液压密封圈的有限元分析及结构优化   总被引:1,自引:0,他引:1  
应用超弹性理论和非线性理论,采用有限元方法对Yx形液压密封圈的性能进行模拟,分析其失效的位置和模式,研究参数对密封性能的影响,提出结构优化模型。结果表明:Yx形密封圈工作时最大应力出现在上下唇交汇处,变形最大区域发生在Yx形开口靠近内唇处,其根部有较大的接触压力,并且可能发生咬伤现象;介质压力增大时,剪应力和最大接触压力明显增加;最大变形随初始压缩率的增加而线性增大,最大剪应力在压缩率为20%时达到最大;槽口圆角半径对Yx形密封圈密封性能的影响很小;摩擦因数增大时,最大剪切应力明显增加,但最大变形和最大接触压力都有减小的趋势。结构尺寸优化后,密封性能增强,接触宽度明显减小,密封圈根部摩擦和磨损得到改善,可以提高密封圈的使用寿命。  相似文献   

18.
航空发动机石墨圆周密封接触特性分析   总被引:1,自引:0,他引:1  
基于结构受力分析,利用ANSYS分析某型在役航空发动机石墨圆周密封的接触特性,研究不同工况参数对密封环最高温度、最大变形、最大应力及接触压力作用规律。结果表明:石墨圆周密封环主密封面应力分布比较均匀,密封环接头处应力最大,这与应用时接头处磨损较重的实际情况相符;辅助密封面和密封跑道应力分布均匀,密封座端面应力沿径向呈梯度分布,最大应力位于密封座靠近密封跑道边缘处;随滑动速度的增大,密封环主密封面最高温度增大,而最大变形、最大应力和接触压力表现为先减小后增大;石墨密封环主密封面最高温度、最大变形、最大应力和接触压力随密封压差增大而增大。  相似文献   

19.
设计与试制了不同规格的波形套试件,测试了其工作特性。建立了波形套工作状态下的数学-力学模型,求解了理论特性,并用ANSYS进行了数值模拟,理论解、模拟解与试验结果吻合。揭示了波形套的定量工作特性以及几何参数对其特性的影响规律:在最大外径不变时,随着波纹圆角半径的增大,特性曲线中弹性区的斜率增大,进入塑性变形所需要的压力亦增大;在波纹圆角半径不变时,随着波形套最大外径的增大,特性曲线中弹性变形区的斜率减小,进入塑性变形所需要的压力亦减小。波形套工作特性的理论与试验研究,为确立其设计方法,促使该类零件广泛应用奠定了基础。  相似文献   

20.
针对高温、三维复合运动(往复+旋转)耦合作用下冲击螺杆钻具传动轴总成密封失效问题,设计氢化丁腈橡胶热老化试验,基于热老化试验数据建立热老化效应冲击螺杆钻具传动轴总成O形密封圈三维有限元模型,采用有限元方法研究流体压力、温度、摩擦因数和往复速度对传动轴总成O形密封圈静密封及动密封性能的影响。结果表明:静密封状态下高应力区位于O形密封圈右侧,高接触压力区位于O形密封圈内接触面、外接触面和侧面,最大von Mises应力和最大接触压力随着流体压力和温度的增大而增大,最大接触压力整体上随着摩擦因数的增大而减小;动密封状态下最大von Mises应力和最大接触压力在往复速度为0.4 m/s和摩擦因数为0.25出现异常规律,最大von Mises应力和最大接触压力随着流体压力和温度的增大而增大。由此建议密封圈在静密封和动密封状态,在往复速度小于0.4 m/s和较小摩擦因数下运行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号