首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
Span-60乳化剂用于流化催化裂化柴油氧化脱硫   总被引:3,自引:1,他引:2  
以Span-60为乳化剂、双氧水为氧化剂、固载磷钨酸的半焦为催化剂,对流化催化裂化(FCC)柴油进行氧化脱硫;考察了反应时间、反应温度、Span-60乳化剂用量和双氧水用量对脱硫率的影响。实验结果表明,FCC柴油氧化脱硫的优化反应条件为:反应时间60m in、反应温度60℃、Span-60乳化剂用量(基于FCC柴油的质量分数)0.6%、双氧水用量(基于FCC柴油的质量分数)2%、催化剂用量(基于FCC柴油的质量分数)1.2%。在此条件下对FCC柴油进行氧化脱硫,FCC柴油中的硫含量由1 400μg/g降至84μg/g,脱硫率达94%。气相色谱分析结果显示,氧化脱硫后FCC柴油中的苯并噻吩衍生物、二苯并噻吩及其衍生物基本上被脱除。  相似文献   

2.
分别采用超声波辐照浸渍法和普通浸渍法制备了MnO2/γ-Al2 O3催化剂,运用电感耦合等离子体原子发射光谱(ICP-AES)和X射线衍射(XRD)对催化剂进行表征,在空气-异丁醛-MnO2/γ-Al2 O3体系中评价其对加氢柴油的氧化脱硫催化性能,并考察了反应温度、异丁醛用量、空气流量、溶剂类型和剂/油体积比对柴油氧化脱硫反应的影响.结果表明,超声波辐照浸渍法制备的MnO2/γ-Al2 O3催化剂对柴油氧化脱硫的催化性能明显优于普通浸渍法制备的催化剂.最适宜的催化柴油氧化脱硫反应的条件为:乙腈为溶剂、加氢柴油30 mL、温度35℃、异丁醛20 mmol、空气流量0.06 L/min、超声波辐照浸渍法制备的MnO2/γ-Al2 O3催化剂0.08 g、剂/油体积比1/6和催化氧化时间10 min.在此条件下可将柴油硫质量分数从542 μg/g降至31 μg/g,柴油脱硫率和回收率分别为94.3%和93.3%.  相似文献   

3.
FCC汽油光催化氧化脱硫的实验室研究   总被引:3,自引:0,他引:3  
采用光催化氧化与液液萃取同时进行的方法,考察了光敏剂十六烷基三甲基溴化铵的用量、pH值、双氧水体积分数和反应时间对脱硫效果的影响。结果表明,在光源为主波长365nm的300W中压汞灯,双氧水体积分数为25%,FCC汽油与双氧水体积比为1:3,总体积为120mL,加入0.20g十六烷基三甲基溴化铵,以7000r/min高速均质5min,pH值为4,光照10h的实验条件下,FCC汽油脱硫率可达91.20%;脱硫后的双氧水及光敏剂可以重复使用,不会造成二次污染。  相似文献   

4.
催化裂化汽油光化学氧化脱硫   总被引:2,自引:0,他引:2  
赵地顺  李发堂  刘文丽 《石油化工》2006,35(10):963-966
以水为萃取剂、空气中的O2为氧化剂、500W高压汞灯为紫外光光源,研究了催化裂化(FCC)汽油光化学氧化反应的机理和氧化产物,考察了反应条件对FCC汽油脱硫率的影响。实验结果表明,FCC汽油中的极性含硫化合物首先部分溶于水相中,然后在水相中被氧化。在空气通入量为150mL/min、水与FCC汽油的体积比为1.0的条件下,反应5h后FCC汽油脱硫率达40.6%,加入0.45g4A分子筛作为O2的吸附剂后FCC汽油脱硫率提高到70.2%。FCC汽油的光化学氧化反应为一级动力学反应,加入4A分子筛时的反应速率常数为0.217 4h-1,半衰期为3.18h。FCC汽油光化学氧化反应的主要产物为亚砜和砜,并进一步生成CO2、草酸、SO24-等。  相似文献   

5.
利用钨酸对ZSM-5/MCM-41复合分子筛载体进行改性,制备WO3-ZSM-5/MCM-41(10%)催化剂。该催化剂具有明显的MCM-41介孔特征峰和适宜的孔容和孔径。以H2O2为氧化剂,甲醇为助剂,去离子水和甲醇为萃取剂,考察WO3-ZSM-5/MCM-41催化氧化FCC汽油脱硫的工艺条件。结果表明:FCC汽油20mL,三氧化钨负载量为10%,剂油质量比1∶50,反应温度60℃,反应时间120min,脱硫率可达67.35。  相似文献   

6.
 分别采用超声波辐照浸渍法和普通浸渍法制备了MnO2/γ-Al2O3催化剂,运用电感耦合等离子体原子发射光谱(ICP-AES)和X射线衍射(XRD)对催化剂进行表征,在空气-异丁醛-MnO2/γ-Al2O3体系中评价其对加氢柴油的氧化脱硫催化性能,并考察了反应温度、异丁醛用量、空气流量、溶剂类型和剂/油体积比对柴油氧化脱硫反应的影响。结果表明,超声波辐照浸渍法制备的MnO2/γ-Al2O3催化剂对柴油氧化脱硫的催化性能明显优于普通浸渍法制备的催化剂。最适宜的催化柴油氧化脱硫反应的条件为:乙腈为溶剂、加氢柴油30 mL、温度35℃、异丁醛20 mmol、空气流量0.06 L/min、超声波辐照浸渍法制备的MnO2/γ-Al2O3催化剂0.08 g、剂/油体积比1/6和催化氧化时间10 min。在此条件下可将柴油硫质量分数从542μg/g 降至31μg/g,柴油脱硫率和回收率分别为94.3%和93.3%。  相似文献   

7.
WO_3/SBA-15催化剂的制备及其氧化脱硫性能   总被引:3,自引:2,他引:1  
以介孔SBA-15分子筛为载体,采用两种不同钨源(H_2WO_4和H_2C_2O_4、H_2WO_4和H_2O_2)通过浸渍法制备了WO_3/SBA-15催化剂;采用X射线衍射和傅里叶变换红外光谱法对介孔SBA-15分子筛和WO_3/SBA-15催化剂进行了表征;以硫含量为500μg/g的模拟汽油为原料进行氧化脱硫反应,反应后油相用1-甲基-2-吡咯烷酮萃取,考察了萃取剂用量、催化剂用量、氧化反应温度和反应时间对脱硫率的影响。表征结果显示,WO_3/SBA-15催化剂有规则的二维六方介孔结构,WO_3在载体上高度分散。实验结果表明,以H_2WO_4和H_2C_2O_4为钨源制备的WO_3/SBA-15催化剂的脱硫效果较好,在反应温度320 K、反应时间120 min、模拟汽油60 mL、催化剂用量0 12 g、双氧水0.57 mL、萃取剂与模拟汽油体积比0.50、萃取时间5 min的条件下,脱硫率可达94.05%。  相似文献   

8.
合成了一种磷钼杂多酸离子液体[HMIM]3PMo12O40催化剂,将其用于FCC汽油催化氧化脱硫过程,考察了催化氧化时间、H2O2用量、催化剂用量及反应温度对模拟汽油脱硫率的影响;在最佳工艺条件下,考察了该催化剂对FCC汽油的脱硫效果。结果表明:当催化氧化时间为90 min、反应温度为60 ℃、n(催化剂)/n(S)=0.04、n(H2O2)/n(S)=4时,模拟汽油脱硫率可达91.6%;FCC汽油的脱硫率为87.8%,且催化剂有较好的循环使用性能,前4次循环使用的平均脱硫率为84.9%。  相似文献   

9.
采用浸渍法一步合成了WO3/SBA-15催化剂,并通过XRD和BET方法对其进行表征。表征结果显示,WO3均匀分散在SBA-15分子筛表面上,且保持SBA-15分子筛的结构,仍属于介孔材料。以活性炭为吸附剂、H2O2为氧化剂、WO3/SBA-15为催化剂、1-甲基-2-吡咯烷酮(NMP)为萃取剂,对FCC汽油进行吸附-氧化萃取深度脱硫,通过单因素实验考察了工艺条件对脱硫率的影响。实验结果表明,优化的氧化萃取脱硫条件为:氧化反应温度60℃、反应时间75 min、30%(w)H2O20.5 mL、WO3/SBA-15催化剂0.16 g、FCC汽油10 mL;NMP与FCC汽油体积比1.0、萃取时间30 min。在此条件下,脱硫率达81.71%。WO3/SBA-15催化剂再生4次后,催化性能降低。  相似文献   

10.
 以双氧水为氧化剂,研究混合戊烷催化氧化-萃取耦合脱硫技术,考察了催化剂及其用量、氧化剂用量、甲醇用量、反应温度和反应时间对混合戊烷脱硫效果的影响。结果表明,氧化和萃取过程可以相互促进达到更好的脱硫效果;在混合戊烷10 mL、双氧水0.1 mL、催化剂钨酸0.012 g、甲醇1.6 mL、温度70℃、时间50 min的条件下,混合戊烷中硫的质量浓度由187.3 mg/L降至7.9 mg/L,脱硫率可达95.8%。  相似文献   

11.
采用甲酸/H2O2为氧化体系,同时增加超声波为反应提供能量,对蜡油的氧化脱硫工艺进行研究,考察氧化时间、剂油比、萃取剂、超声波等不同因素对脱硫效果的影响。结果表明,在甲酸/H2O2氧化体系中的最佳脱硫条件为:氧化时间8min,氧化剂与油的体积比为8:100,萃取剂为N,N-二甲基甲酰胺(DMF);超声氧化脱硫效果优于未加超声波氧化脱硫效果,超声氧化脱硫在短时间内就可以使脱硫率达到80%以上。  相似文献   

12.
The oxidative desulfurization of model gasoline consisting of thiophene dissolved in n-octane was investigated with a series of modified titanium silicalite (TS) catalysts in presence of hydrogen peroxide and formic acid systems, and the reaction mechanism of the oxidative desulfurization of thiophene was preliminarily researched. The results showed that the copper modified TS was an active catalyst for thiophene oxidation while the other metal modified TSs were less active catalysts. When Cu-TS at a Cu/Si molar ratio of 0.015 was used as a catalyst for oxidation of model gasoline, the conversion of thiophene was 94.1% at 120 min. The conversion of thiophene was easily enhanced by increasing reaction time or reaction temperature, and reduced with addition of xylene and cyclohexene.  相似文献   

13.
 用过氧乙酸溶液对催化柴油进行氧化和萃取处理,探索了柴油氧化萃取脱硫的变化规律。依据反应动力学和萃取相平衡原理,确定了过氧乙酸生成动力学方程、催化柴油中有机硫化物符合顺序氧化机制的反应动力学方程、硫化物液液相平衡方程,建立了催化柴油过氧乙酸氧化与萃取的脱硫模型方程。通过模型参数估值,建立了催化柴油脱硫数学模型。模型预测结果表明,柴油脱硫率随着双氧水过氧化氢质量分数提高呈现先提高后降低的变化趋势,随着双氧水与乙酸体积比的减小或柴油与氧化溶液体积比的降低呈提高的变化趋势,随着氧化处理时间的延长呈先增大后降低的变化趋势。  相似文献   

14.
以氧气作氧化剂,甲酸作催化剂,N-甲基吡咯烷酮(NMP)作萃取剂,采用催化氧化反应与溶剂萃取相结合的方法对催化裂化柴油进行了氧化萃取脱硫实验。通过单因素实验考察了催化剂用量,催化氧化温度、时间、氧气压力及萃取剂的用量等对催化裂化柴油硫含量的影响。通过实验得出最适宜的脱硫条件为:反应温度80℃;反应时间90min;充氧压力0.6MPa;催化剂体积分数为10%。经催化氧化,柴油硫质量分数可从1694.2μg/g降到190.8μg/g,脱硫率达到88.7%;在剂油比为1.0和室温条件下,用NMP三级萃取,柴油硫质量分数为37.5μg/g,小于50μg/g,达到欧Ⅳ排放标准的要求。  相似文献   

15.
采用氧化萃取方法,以过氧化氢为氧化剂,甲酸为催化剂,十六烷基三甲基氯化铵为相转移催化剂,糠醛为萃取剂,对焦化汽油进行脱硫脱氮处理。结果表明,氧化萃取最佳工艺条件为:焦化汽油用量50mL,甲酸/过氧化氢(体积比)0.16,相转移催化剂用量0.06g,过氧酸/焦化汽油(体积比)0.6,反应温度50℃,反应时间50min,萃取剂糠醛用量50mL。在此条件下,焦化汽油二级萃取脱硫率可达76.95%,脱氮率可达95.21%,汽油收率达到90%以上。萃取剂的再生性能良好,可回收利用。  相似文献   

16.
The extractive desulfurization of a model and several real gasoline samples was investigated using imidazolium-based ionic liquids (ILs). Factorial design of experiments indicated that, among several process variables, the number of extraction steps and the IL/gasoline volume ratio were statistically highly significant. The results showed a desulfurization efficiency of 95.2% under the optimal conditions. The following order was observed for the extraction of thiophenic compounds: benzothiophene>thiophene>3-methylthiophene>2-methylthiophene, with 96.1% removal efficiency for the first one. The IL extraction was applied as a complementary process for the oxidative desulfurization by hydrogen peroxide and formic acid, which provided high efficiency and selectivity for desulfurization of gasoline.  相似文献   

17.
以氧气为氧化剂,硼酸为催化剂,活性白土为吸附剂,将催化氧化与吸附相结合,对催化裂化汽油进行了氧化吸附脱硫研究。结果表明,在氧气压力为2.0 MPa,氧化温度为80℃,氧化时间为60 min,催化剂用量占原料汽油的质量分数为3%,原料汽油与吸附剂质量比为20的优化条件下,汽油中的硫含量可从571.00μg/g降至68.52μg/g,脱硫率为88.00%,汽油的收率为83.4%。  相似文献   

18.
Abstract

The sulfur compounds in fluid catalytic cracked (FCC) gasoline were removed with a one-step oxidation–extraction method. Tungstophosphoric acid (HPWA), tert-butyl hydroperoxide (TBHP), and ethanol were used as catalyst, oxidant, and solvent, respectively. TBHP has a higher desulfurization degree and oil yield than hydrogen peroxide, and HPWA exhibited higher desulfurization degree and oil yield than the other kinds of acids. The one-step process has a higher desulfurization degree than the two-step process. The optimal operating parameters were obtained as follows: the catalyst amount was 5 wt%, the mole ratio of oxygen in the oxidant to the sulfur in the gasoline (O/S) was 10, the reaction temperature was 60°C, and the reaction time was 2 hr. Under these conditions, the desulfurization degree and yield of oil were both in the range of 85–90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号