首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The NO x adsorption mechanism on Pt/BaO/Al2O3 catalysts was investigated by performing NO x storage/reduction cycles, NO2 adsorption and NO + O2 adsorption on 2%Pt/(x)BaO/Al2O3 (x = 2, 8, and 20 wt%) catalysts. NO x uptake profiles on 2%\Pt/20%BaO/Al2O3 at 523 K show complete uptake behavior for almost 5 min, and then the NO x level starts gradually increasing with time and it reaches 75% of the inlet NO x concentration after 30 min time-on-stream. Although this catalyst shows fairly high NO x conversion at 523 K, only ~2.4 wt% out of 20 wt% BaO is converted to Ba(NO3)2. Adsorption studies by using NO2 and NO + O2 suggest two different NO x adsorption mechanisms. The NO2 uptake profile on 2%Pt/20%BaO/Al2O3 shows the absence of a complete NO x uptake period at the beginning of adsorption and the overall NO x uptake is controlled by the gas–solid equilibrium between NO2 and BaO/Ba(NO3)2 phase. When we use NO + O2, complete initial NO x uptake occurs and the time it takes to convert ~4% of BaO to Ba(NO3)2 is independent of the NO concentration. These NO x uptake characteristics suggest that the NO + O2 reaction on the surface of Pt particles produces NO2 that is subsequently transferred to the neighboring BaO phase by spill over. At the beginning of the NO x uptake, this spill-over process is very fast and so it is able to provide complete NO x storage. However, the NO x uptake by this mechanism slows down as BaO in the vicinity of Pt particles are converted to Ba(NO3)2. The formation of Ba(NO3)2 around the Pt particles results in the development of a diffusion barrier for NO2, and increases the probability of NO2 desorption and consequently, the beginning of NO x slip. As NO x uptake by NO2 spill-over mechanism slows down due to the diffusion barrier formation, the rate and extent of NO2 uptake are determined by the diffusion rate of nitrate ions into the BaO bulk, which, in turn, is determined by the gas phase NO2 concentration.  相似文献   

2.
The effect of steam on NO x reduction over lean NO x trap (LNT) Pt–Ba/Al2O3 and Pt/Al2O3 model catalysts was investigated with reaction protocols of rich steady-state followed by lean–rich cyclic operations using CO and C3H8 as reductants, respectively. Compared to dry atmosphere, steam promoted NO x reduction; however, under rich conditions the primary reduction product was NH3. The results of NO x reduction and NH3 selectivity versus temperature, combined with temperature programmed reduction of stored NO x over Pt–BaO/Al2O3 suggest that steam causes NH3 formation over Pt sites via reduction of NO x by hydrogen that is generated via water gas shift for CO/steam, or via steam reforming for C3H8/steam. During the rich mode of lean–rich cyclic operation with lean–rich duration ratio of 60 /20 s, not only the feed NO, but also the stored NO x contributed to NH3 formation. The NH3 formed under these conditions could be effectively trapped by a downstream bed of Co2+ exchanged Beta zeolite. When the cyclic operation was switched into lean mode at T < 450 °C, the trapped ammonia in turn participated in additional NO x reduction, leading to improved NO x storage efficiency.  相似文献   

3.
The NOx storage catalyst Pt/BaAl2O4-Al2O3 was prepared by a coprecipitation--impregnation method. For fresh sample, the barium mainly exists as the BaAl2O4 phase except for some BaCO3 phase. The BaAl2O4 phase is the primary NO x storage phase of the sample. EXAFS and TPD were used for investigating the mechanism of NO x storage. It is found that two kinds of Pt sites are likely to operate. Site 1 is responsible for NO chemisorption and site 2 for oxidizing NO to nitrates and nitrites. When NO adsorbs on the sample below 200 °C, it mainly chemisorbs in the form of molecular states. Such adsorption results in an increase of the coordination magnitude of Pt-O, and a decrease of that of Pt-Pt and Pt-Cl. The coordination distance of Pt-Pt, Pt-Cl and Pt-O also increases. When the adsorption occurs above 200 °C, NO can be easily oxidized by O2, and stored as nitrites or nitrates at the basic BaAl2O4. Site 2 is regenerated quickly. A high adsorption temperature is favorable for nitrate formation.  相似文献   

4.
Castoldi  L.  Nova  I.  Lietti  L.  Tronconi  E.  Forzatti  P. 《Topics in Catalysis》2007,42(1-4):189-193
The study of the gas-phase NO reduction by H2 and of the stability/reactivity of NO x stored over Pt–Ba/Al2O3 Lean NO x Trap systems allowed to propose the occurrence of a reduction process of the stored nitrates occurring via to a Pt-catalyzed surface reaction which does not involve, as a preliminary step, the thermal decomposition of the adsorbed NO x species.  相似文献   

5.
The effects of CO2 and H2O on the NO x storage and reduction characteristics of a Pt/Ba/Al2O3 catalyst were investigated. The presence of CO2 and H2O, individually or together, affect the performance and therefore the chemistry that occurs at the catalyst surface. The effects of CO2 were observed in both the trapping and reduction phases of the experiments, whereas the effect of H2O seems limited to the trapping phase. The data also indicate that multiple types of sorption sites (or mechanisms for sorption) exist on the catalyst. One mechanism is characterized by a rapid and complete uptake of NO x . A second mechanism is characterized by a slower rate of NO x uptake, but this mechanism is active for a longer time period. As the temperature is increased, the effect of H2O decreases compared to that of CO2. At the highest temperatures examined, the elimination of H2O when CO2 is present did not affect the performance.  相似文献   

6.
NO x reduction with a combination of catalysts, Pd catalyst, NO x storage reduction (NSR) catalyst and Cu/ZSM-5 in turn, was investigated to elucidate for the high NO x reduction activity of this catalyst combination under oxidative atmosphere with periodic deep rich operation. The catalytic activity was evaluated using the simulated exhaust gases with periodically fluctuation between oxidative and reductive atmospheres, and it was found that the NO x reduction activity with this catalyst combination was apparently higher than that of the solely accumulation of these individual activities, which was caused by the additional synergic effect by this combination. The Pd catalyst upstream of the NSR catalyst improved NO x storage ability by NO2 formation under oxidative atmosphere. The stored NO x was reduced to NH3 on the NSR catalyst, and the generated NH3 was adsorbed on Cu/ZSM-5 downstream of the NSR catalyst under the reductive atmosphere, and subsequently reacted with NO x on the Cu/ZSM-5 under the oxidative atmosphere.  相似文献   

7.
Arena  G.E.  Bianchini  A.  Centi  G.  Vazzana  F. 《Topics in Catalysis》2001,16(1-4):157-164
The transient reactivity and surface phenomena of storage and conversion of NO x species on Pt(1%)–Me/Al2O3 catalysts, where Me = Ba, Ce and Cu, were studied by the RWF (rectangular wavefront) method. The Me component has a relevant influence on the processes of surface storage and transformation. The reduction of NO x by propene in the presence of oxygen is promoted by adding Cu to a Pt/Al2O3 catalyst, while cerium promotes transient conversion of NO in the absence of propene, but inhibits the reduction of NO x in the presence of propene. Copper is suggested to be a promising element to add together with Ba for new NO x storage-reduction catalysts due to its capacity to act both as a storage element and as promoter for NO x reduction.  相似文献   

8.
Isothermal storage of NO2 and subsequent reduction with different reducing agents (H2, CO or H2 + CO) in a lean NO x trap catalyst was tested by Temperature Programmed Desorption (TPD) and Temperature Programmed Reduction (TPR) experiments at temperatures representative of automotive “cold-start” conditions (<200 °C) using a commercial NO x trap catalyst. Results from the TPR experiments revealed that no reduction of stored NO2 to N2 was observed at 100–180 °C, and at 200 °C 10% reduction only of NO2 to N2 was measured. A special affinity of H2 to form NH3 was observed during the reduction of stored NO2. The formation of NH3 increases with increasing amount of stored NO2 and decreases with increasing storage temperature. Direct relation exists between the amount of adsorbed and/or stored NO2 and the formation of H2O and NH3.  相似文献   

9.
In this study the effect of ceria addition on the performance of a model Ba-based lean NO x trap (LNT) catalyst was examined. The presence of ceria improved NO x storage capacity in the temperature range 200–400 °C under both continuous lean and lean-rich cycling conditions. Temperature-programmed experiments showed that NO x stored in the ceria-containing catalyst was thermally less stable and more reactive to reduction with both H2 and CO as reductants, albeit at the expense of additional reductant consumed by reduction of the ceria. These findings demonstrate that the incorporation of ceria in LNTs not only improves NO x storage efficiency but also positively impacts LNT regeneration behavior.  相似文献   

10.
NO x adsorption was measured with a barium based NOx storage catalyst at an engine bench equipped with a lean burn gasoline direct injection engine (GDI). In order to study the influence of gas phase NO2 on the NOx storage efficiency two different pre-catalysts were used: One with excellent NO oxidation activity to produce a high NO2 concentration and another pre-catalyst without NO oxidation activity and therefore high NO concentration at the NO x storage catalyst inlet. Both pre-catalyst had excellent HC and CO conversion efficiency and therefore the CO and HC concentration at the NO x storage catalyst inlet was practically zero. No lean NO x reduction was observed. Under that conditions, experiments with NO x storage catalysts of different length show that a high NO2 inlet concentration did not enhance the NO x storage efficiency. Moreover, we observed reduction of NO2 to NO over the NOx storage catalyst. However, in presence of a high NO inlet concentration NO2 formation was observed which may proceed parallel to NO x storage.  相似文献   

11.
Park  Joo-Hyoung  Cho  Hyun Ju  Park  Sang Jun  Nam  In-Sik  Yeo  Gwon Koo  Kil  Jeong Ki  Youn  Young Kee 《Topics in Catalysis》2007,42(1-4):61-64
Co/Pt/Ba/γ-Al2O3, Co/Ba/γ-Al2O3, Pt/Ba/γ-Al2O3, Co/Pt/γ-Al2O3, Ba/γ-Al2O3, Pt/γ-Al2O3, and Co/γ-Al2O3 type catalysts were prepared by a conventional impregnation method, and their NO x storage capacities were evaluated by colorimetric assay. Co-containing catalysts had a higher NO x storage capacity than that of Co-free counterparts. The role of each component, especially Co, for the catalysts prepared was investigated by using in-situ FTIR. The high NO x storage for Co-containing catalysts including Co/Ba/γ-Al2O3 and Co/Pt/Ba/γ-Al2O3 is mainly due to the formation of Co3O4 on the catalyst surface identified by XAFS.  相似文献   

12.
Erkfeldt  Sara  Jobson  Edward  Larsson  Mikael 《Topics in Catalysis》2001,16(1-4):127-131
One possible way to reduce NO x in lean exhausts is by using NO x trap catalysts. This paper addresses storage of NO x on such catalysts at temperatures below the catalyst light-off. Experiments carried out on commercial samples in synthetic exhausts revealed a large capacity for storage of NO x when NO2 was added at temperatures below 150°C. In contrast, when NO was added instead, no storage took place. CO was found to decrease the storage by reacting with NO2 and forming NO and CO2. Propene inhibited the reaction between NO2 and CO and therefore gave rise to larger NO x storage when CO was present. The paper concludes with a discussion of a possible mechanism for the storage of NO x at low temperatures.  相似文献   

13.
NO x storage mechanism over a model NSR catalyst has been analysed by means of in-situ FTIR. The results indicated that a two-step mechanism involving nitrite formation, without requirement of NO evolution to NO2, followed by oxidation to nitrate species, being both steps assisted by O2, would describe the overall process at 350 °C. This mechanism could be also extended to a wider temperature range. The interaction between Pt and Ba sites was crucial in this mechanism, since spillover process of oxidising agents appeared to play a key role. NO2 direct interaction with BaO surface may also occur, but this process was only dominant on Ba sites away from Pt interaction.  相似文献   

14.
Landau  M. V.  Rao  P. M.  Thomas  S.  Pitchon  V.  Zukerman  R.  Vradman  L.  Herskowitz  M. 《Topics in Catalysis》2007,42(1-4):203-207
Cs salt of 12-tungstophosphoric acid (HPW) was deposited simultaneously at the external surface of the SBA-15 silica microcrystals and inside its mesoporous channels at loading of 60 wt% and Cs/W ratio in the range between 0.9 and 2, followed by impregnation of 1 wt% Pt. The performance of the Pt/CsHPW/SBA-15 composite materials was tested in the NO x storage. The optimal NO x storage capacity and efficiency were achieved at Cs/W of 1.5. The dispersion of CsHPW on SBA-15 led to a significant decrease of its crystal size (5–13 nm) compared with bulk HPW and HPW supported on titania (28–29 nm). Pt/CsHPW/SBA-15 displayed lower NO x absorption capacity but much higher absorption and desorption efficiency than the reference Pt/HPW and Pt/HPW/TiO2 materials. Consequently, Pt/CsHPW/SBA-15 displayed a better performance in short lean (2 min)—rich (1 min) absorption-desorption cycles. The novel Pt/CsHPW/SBA-15 nanocomposites presents the basis for improved storage material for NO x removal from lean exhaust gases in highly dynamic aftertreatment technologies.  相似文献   

15.
NO adsorption and NO/O2 co-adsorption on CeO2 at different temperatures was studied by DRIFT-Spectroscopy. The results indicate that this oxide plays an important role in storing NO x . FTIR studies show that NO adsorption is dominated by the formation of nitrite species. Furthermore, cis- and trans hyponitrite species are detected. Co-adsorption of NO/O2 leads to the formation of nitrates. The experimental data show that the formation of nitrates is a consecutive reaction: adsorption of NO to form nitrite species (NO2 ), followed by an oxidation to form nitrate species (NO3 ).  相似文献   

16.
Dawody  Jazaer  Tönnies  Inga  Fridell  Erik  Skoglundh  Magnus 《Topics in Catalysis》2007,42(1-4):183-187
Transient experiments were performed to study sulfur deactivation and regeneration of Pt/BaO/Al2O3 and Pt/SrO/Al2O3 NO x storage catalysts. It was found that the strontium-based catalysts are more easily regenerated than the barium-based catalysts and that a higher fraction of the NO x storage sites are regenerated when H2 is used in combination with CO2 compared to H2 only.  相似文献   

17.
The reduction of NO x with propene or propane in the presence of 1 or 4% O2 was studied at low conversions over a 7.4 wt% Cu-ZrO2 and a 3.2 wt% Cu-ZSM-5 catalyst. The rates of N2 production were compared in experiments using only NO or a mixture of NO and NO2 in the feed. They were also compared with the rates of NO2 reduction to NO under the same conditions, and of NO oxidation to NO2 in the absence of hydrocarbon. It was found that the reduction of NO2 to NO was very fast, consistent with literature data. The data were best explained by a reaction scheme in which the hydrocarbon was activated primarily by reaction with adsorbed NO2 to form an adsorbed oxidized N-containing hydrocarbon intermediate, the reaction of which with NO was the principal route to produce N2 under lean NO x conditions.On leave from State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.  相似文献   

18.
In this paper a global reaction kinetic model is used to understand and describe the NOx storage/reduction process in the presence of CO2 and H2O. Experiments have been performed in a packed bed reactor with a Pt–Ba/γ-Al2O3 powder catalyst (1 wt% Pt and 30 wt% Ba) with different lean/rich cycle timings at different temperatures (200, 250, and ) and using different reductants (H2, CO, and C2H4). Model simulations and experimental results are compared. H2O inhibits the NO oxidation capability of the catalyst and no NO2 formation is observed. The rate of NO storage increases with temperature. The reduction of stored NO with H2 is complete for all investigated temperatures. At temperatures above , the water gas shift (WGS) reaction takes place and H2 acts as reductant instead of CO. At , CO and C2H4 are not able to completely regenerate the catalyst. At the higher temperatures, C2H4 is capable of reducing all the stored NO, although C2H4 poisons the Pt sites by carbon decomposition at . The model adequately describes the NO breakthrough profile during 100 min lean exposure as well as the subsequent release and reduction of the stored NO. Further, the model is capable of simulating transient reactor experiments with 240 s lean and 60 s rich cycle timings.  相似文献   

19.
Several nitrogen compounds can be produced during the regeneration phase in periodically operated NOx storage and reduction catalyst (NSRC) for conversion of automobile exhaust gases. Besides the main product N2, also NO, N2O, and NH3 can be formed, depending on the regeneration phase length, temperature, and gas composition. This contribution focuses on experimental evaluation of the NOx reduction dynamics and selectivity towards the main products (NO, N2 and NH3) within the short rich phase, and consequent development of the corresponding global reaction-kinetic model. An industrial NSRC monolith sample of PtRh/Ba/CeO2/ -Al2O3 type is employed in nearly isothermal laboratory micro-reactor. The oxygen and NOx storage/reduction experiments are performed in the temperature range 100–500 °C in the presence of CO2 and H2O, using H2, CO and C3H6 as the reducing agents.The spatially distributed NSRC model developed earlier is extended by the following reactions: NH3 is formed by the reaction of H2 with NOx and it can further react with oxygen and NOx deposited on the catalyst surface, producing N2. Considering this scheme with ammonia as an active intermediate of the NOx reduction, a good agreement with experiments is obtained in terms of the NOx reduction dynamics and selectivity. A reduction front travelling in the flow direction along the reactor is predicted, with the NH3 maximum on the moving boundary. When the front reaches the reactor outlet, the NH3 peak is observed in the exhaust gas. It is assumed that the ammonia formation during the NOx reduction by CO and HCs at higher temperatures proceed via the water gas shift and steam reforming reactions producing hydrogen. It is further demonstrated that oxygen storage effects influence the dynamics of the stored NOx reduction. The temperature dependences of the outlet ammonia peak delay and the selectivity towards NH3 are correlated with the effective oxygen and NOx storage capacity.  相似文献   

20.
NO x -storage catalysts (NSC) with varied washcoat compositions have been investigated experimentally under lean and rich conditions. Besides the fact that Ba and Rh are essential for NO x -storage and -reduction, it was observed that Ba accelerates the NO-reduction and decreases NO-oxidation kinetics. It also turned out to be the promoting species regarding water gas shift reaction. The results revealed kinetic inhibition effects by CO, C3H6 and NO, being less pronounced with Ba in the washcoat. It is further shown that the cyclic NOx-conversion of the NSC is mainly determined by the processes in the regeneration phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号