首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
A novel CO2 heat pump system was provided for use in fuel cell vehicles, when considering the heat exchanger arrangements. This cycle which had an inverter-controlled, electricity-driven compressor was applied to the automotive heat pump system for both cooling and heating. The cooling and heating loops consisted of a semi-hermetic compressor, supercritical pressure microchannel heat exchangers (a gas cooler and a cabin heater), a microchannel evaporator, an internal heat exchanger, an expansion valve and an accumulator. The performance characteristics of the CO2 heat pump system for fuel cell vehicles were analyzed by experiments. Results for steady and transient state performance were provided for various operating conditions. Furthermore, experiments to examine the arrangements of a radiator and an outdoor heat exchanger were carried out by changing their positions for both cooling and heating conditions. The arrangements of the radiator and the outdoor heat exchanger were tested to quantify cooling/heating effectiveness and mutual interference. The improvement of heating capacity and coefficient of performance (COP) of the CO2 heat pump system was up to 54% and 22%, respectively, when using preheated air through the radiator instead of cold ambient air. However, the cooling capacity quite decreased by 40–60% and the COP fairly decreased by 43–65%, for the new radiator-front arrangement.  相似文献   

2.
After the CFCs and the HCFCs were deemed unfit as working fluids in refrigeration, air conditioning, and heat pump applications, there has been a renaissance for carbon dioxide technology. Heat pumps is one of the application areas where theoretical and experimental investigations are now performed by an increasing number of research institutions and manufacturers. This paper gives an overview of some of the current activities in the CO2 heat pump field. Discussed are the important characteristics of the transcritical CO2 process applied to heat pumps, and also discussed are theoretical and experimental results from several heat pump applications. Provided that calculations and system designs are performed on the premises of the working fluid, and that test plants are constructed and operated to fully exploit the specific characteristics of both the fluid and the transcritical process, the results show that CO2 is an attractive alternative to the synthetic fluids. Competitive products may be launched in the near future.  相似文献   

3.
A prototype transcritical CO2 heat pump was constructed for heating water to temperatures greater than 65°C while providing refrigeration at less than 2°C. The heating capacity was 115 kW at an evaporation temperature of +0.3°C and a hot water temperature of 77.5°C, with a heating coefficient of performance (COP) of 3.4. Performance data is presented for each of the compressor, the gas cooler, and the recuperator as well as for the overall heat pump system. Equipment performance data was incorporated into a computer model to enable parametric investigations of heat pump performance. Model predictions showed that the hot water temperature could be increased from 65 to 120°C with a relatively small reduction in heating capacity and heating COP of 33 and 21%, respectively. Model predictions also highlight the potential for significant capacity improvements by eliminating the recuperator in favour of a larger gas cooler.  相似文献   

4.
The cooling performance of a CO2 cycle must be improved to develop a competitive air-conditioning system with the conventional air-conditioners using HFCs. In this study, the cooling performance of a variable speed CO2 cycle was measured and analyzed by varying the refrigerant charge amount, compressor frequency, EEV opening, and length of an internal heat exchanger (IHX). The basic CO2 system without the IHX showed the maximum cooling COP of 2.1 at the compressor discharge pressure of 9.2 MPa and the optimum normalized charge of 0.282. The cooling COP decreased with the increase of compressor frequency at all normalized charges. The optimum EEV opening increased with compressor frequency. Simultaneous control of EEV opening and compressor frequency allowed optimum control of the compressor discharge pressure. The optimal compressor discharge pressure of the modified CO2 cycle with the IHX was reduced by 0.5 MPa. The IHX increased the cooling capacity and COP of the CO2 cycle by 6.2–11.9% and 7.1–9.1%, respectively, at the tested compressor frequencies from 40 to 60 Hz.  相似文献   

5.
A novel system for space heating has been developed taking advantage of the favourable characteristics of the transcritical CO2 cycle, where heat is rejected by cooling of supercritical gas at gliding temperature. By a proper design of a counter flow heat exchanger it is possible to heat air to high temperatures and thereby giving the driving force for circulation of air through the heat exchanger, in consequence without using a fan. A concept without a fan, here called a fan-less concept, would give several advantages; no noise, no power consumption for the fan and increased comfort with reduced air draft in the room. The concept may also be used for heat rejection in systems for light commercial applications or other applications where fan assisted heat rejection concepts are used today.

An experimental study of a CO2 to air heat exchanger has been performed. The heat exchanger was made of a vertically finned aluminium profile. Tubes for CO2 were mounted in the base of the profile. CO2 at supercritical pressure flowing downwards through the profile was heating air flowing in the channels formed by the fins of the profile. In this way a perfect counter flow heat exchange was obtained. The prototype heat exchanger was 2000 mm high and 190 mm wide, with 45 mm deep fins.

A simulation model was developed and verified to give good accordance with the experimental data. The model was then used to study how different design parameters influence the efficiency of the heat exchanger. By altering the number of fins and the fin thickness of the tested profile, the heat output at a given condition could be increased to almost double, meaning that the initial design was relatively far from optimal.

With the original heat exchanger profile design concept a heat exchanger with height, width and depth of, respectively 2000, 750 and 200 mm, would be required in order to achieve a heat output of 2500 W if the constraints for assumed acceptable efficiency was applied. If a heat exchanger with less height is preferred, the width will have to be increased in order to maintain about the same front area, width times height. Ideas have also been introduced for how to improve both the compactness and efficiency of the heat exchanger by introducing a compact counter flow heat exchanger in the lower part of the air flow channel. It is concluded that the new concept looks promising for use as the indoor heat exchanger in an air-to-air heat pump or as a gascooler for heat rejection in small commercial equipment, when using CO2 as refrigerant.  相似文献   


6.
The main purpose of this study is to investigate the performance of a transcritical CO2 cycle with an internal heat exchanger for hot water heating. Performance test and simulation have been carried out for a transcritical CO2 cycle by varying secondary heat transfer fluid temperatures at evaporator and gas-cooler inlets as well as the discharge pressure. Variations of mass flow rate of refrigerant, compressor power, heating capacity, and co-efficient of performance (COP) with respect to the length of an internal heat exchanger are presented at various operating conditions. Good quantitative agreement between model predictions and experimental results has been found; most parameters have absolute average deviations of less than 4%. As the length of the internal heat exchanger increases, COP is enhanced but heating capacity tends to decrease due to the trade-offs between the effectiveness and pressure drop in the internal heat exchanger.  相似文献   

7.
CO2 is one of the few non-toxic and non-flammable working fluids that do not contribute to ozone depletion or global warming, if leaked to the atmosphere. Tap water heating is one promising application for a trans-critical CO2 process. The temperature glide at heat rejection contributes to a very good temperature adaptation when heating tap water, which inherits a large temperature glide. This, together with efficient compression and good heat transfer characteristics of CO2, makes it possible to design very efficient systems. A heating-COP of 4.3 is achieved for the prototype when heating tap water from 9°C to 60°C, at an evaporation temperature of 0°C. The results lead to a seasonal performance factor of about 4 for an Oslo climate, using ambient air as heat source. Thus, the primary energy consumption can be reduced with more than 75% compared with electrical or gas fired systems. Another significant advantage of this system, compared with conventional heat pump water heaters, is that hot water with temperatures up to 90°C can be produced without operational difficulties.  相似文献   

8.
Heat transfer and pressure drop characteristics of the Printed Circuit Heat Exchanger (PCHE) were investigated in an experimental supercritical CO2 loop. The inlet temperature and pressure were varied from 280 to 300 °C/2.2 to 3.2 MPa in the hot side and from 90 to 108 °C/6.5 to 10.5 MPa in the cold side while the mass flow rate was varied from 40 to 80 kg h−1. The overall heat transfer coefficient range is 300–650 W m−2 K−1 while the compactness with respect to the heat exchanger core is approximately 1050 m2 m−3. The empirical correlations to predict the local heat transfer coefficient and pressure drop factor as a function of the Reynolds number have been proposed for the tested PCHE.  相似文献   

9.
In this study, a method of using a capacitance sensor was investigated as a means to measure the mass fraction of a type of PAG oil flowing with CO2 in a transcritical cycle. The test facility equipped with the capacitance sensor was fabricated to establish and maintain a known oil mass fraction and to measure the capacitance of the CO2/oil mixture. By using this facility, the relationship among three parameters (reduced CO2 density (CO2 density divided by the critical density of CO2), oil mass fraction, and relative dielectric constant of the CO2/PAG oil mixture) was developed. For the range of oil mass fraction 0–0.07, the error of new measurement method was within 0.005 for a wide range of pressures and temperatures tested. This study established the method of measuring the oil mass fraction continuously in the transcritical CO2 cycle without affecting the cycle performance. Through this method, the effect of oil mass fraction on the characteristics of the oil circulation behavior and the performance of the transcritical CO2 cycle can be investigated.  相似文献   

10.
A typical transcritical CO2 system shows lower performance than conventional air conditioners in cooling mode operation. In addition, the CO2 system shows a large variation of the performance according to refrigerant charge whereas the conventional systems do not show large variation. In this study, the performance of the CO2 heat pump was measured and analyzed by varying the refrigerant charge amount at standard cooling condition. In addition, the performance sensitivity of the CO2 system as a function of refrigerant charge was compared to those for the R22, R410A, and R407C systems. The cooling COP of the CO2 system was reduced more significantly at undercharged conditions than at overcharged conditions as the deviation from the optimal charge increased. The expansion loss was the dominant factor affecting system performance at undercharged conditions, while the gascooler loss became the major parameter at overcharged conditions. Among the systems investigated and compared in this study, the CO2 system showed the most reduction in performance at undercharged conditions.  相似文献   

11.
The Nusselt number variations of supercritical carbon dioxide during in-tube cooling are presented and discussed. Using data presented in this paper as well as prior publications, a new correlation to predict the heat transfer coefficient of supercritical carbon dioxide during in-tube cooling has been developed. The new correlation is presented in this paper. It is based on mean Nusselt numbers that are calculated using the thermophysical properties at the wall and the bulk temperatures, respectively. It is seen that the majority of the numerical and experimental values are within ±20% of the values predicted by the new correlation.  相似文献   

12.
This paper evaluates performance merits of CO2 and R134a automotive air conditioning systems using semi-theoretical cycle models. The R134a system had a current-production configuration, which consisted of a compressor, condenser, expansion device, and evaporator. The CO2 system was additionally equipped with a liquid-line/suction-line heat exchanger. Using these two systems, an effort was made to derive an equitable comparison of performance; the components in both systems were equivalent and differences in thermodynamic and transport properties were accounted for in the simulations. The analysis showed R134a having a better COP than CO2 with the COP disparity being dependent on compressor speed (system capacity) and ambient temperature. For a compressor speed of 1000 RPM, the COP of CO2 was lower by 21% at 32.2°C and by 34% at 48.9°C. At higher speeds and ambient temperatures, the COP disparity was even greater. The entropy generation calculations indicated that the large entropy generation in the gas cooler was the primary cause for the lower performance of CO2.  相似文献   

13.
This paper presents results of an experimental study to investigate the effect of conduction through the fins on the capacity of a serpentine gas cooler. The gas cooler was a part of a transcritical CO2 system which was operated in A/C mode. The capacity of the gas cooler was carefully measured in the chamber which simulated the outdoor condition with the original heat exchanger. In order to experimentally validate the conduction effect on the capacity, some sections of the fins, where the conduction was most significant, were cut by EDM (Electrical Discharge Machining). The capacity of the heat exchanger, after cutting fins, was measured in the same chamber at nearly identical test conditions as before cutting. Gas cooler capacity was improved up to 3.9% by cutting the fins, and temperature difference between refrigerant exit and air inlet for the gas cooler was reduced by 0.9–1.5 °C. The maximum uncertainty in the capacity measurements was 2.5% and the accuracy of temperature measurements was 0.1 °C. It was shown by system simulation that system COP could be improved by 5% by eliminating this severe conduction effect, as was done in this experiment. The tube surface temperature at some points of the gas cooler was measured and infrared images were taken to show the conduction effect before and after cutting fins.  相似文献   

14.
A theoretical and experimental study has been carried out for a residential brine-to-water CO2 heat pump system for combined space heating and hot water heating. A 6.5 kW prototype heat pump unit was constructed and extensively tested in order to document the performance and to study component and system behaviour over a wide range of operating conditions. The CO2 heat pump was equipped with a unique counter-flow tripartite gas cooler for preheating of domestic hot water (DHW), low-temperature space heating and reheating of DHW.

The CO2 heat pump was tested in three different modes: space heating only, DHW heating only and simultaneous space heating and DHW heating. The heat pump unit gave off heat to a floor heating system at supply/return temperatures of 33/28, 35/30 or 40/35 °C, and the set-point temperature for the DHW was 60, 70 or 80 °C. Most tests were carried out at an evaporation temperature of −5 °C, and the average city water temperature was 6.5 °C. The experimental results proved that a brine-to-water CO2 heat pump system may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pump systems as long as: (1) the heating demand for hot water production constitutes at least 25% of the total annual heating demand of the residence, (2) the return temperature in the space heating system is about 30 °C or lower, (3) the city water temperature is about 10 °C or lower and (4) the exergy losses in the DHW tank are small.  相似文献   


15.
Experiments were performed on the convective boiling heat transfer in horizontal minichannels with CO2. The test section is made of stainless steel tubes with inner diameters of 1.5 and 3.0 mm and with lengths of 2000 and 3000 mm, respectively, and it is uniformly heated by applying an electric current directly to the tubes. Local heat transfer coefficients were obtained for a heat flux range of 20–40 kW m−2, a mass flux range of 200–600 kg m−2 s−1, saturation temperatures of 10, 0, −5, and −10 °C and quality ranges of up to 1.0. Nucleate boiling heat transfer contribution was predominant, especially at low quality region. The reduction of heat transfer coefficient occurred at a lower vapor quality with a rise of heat flux, mass flux and saturation temperature, and with a smaller inner tube diameter. The experimental heat transfer coefficient of CO2 is about three times higher than that of R-134a. Laminar flow appears in the minichannel flows. A new boiling heat transfer coefficient correlation that is based on the superposition model for CO2 was developed with 8.41% mean deviation.  相似文献   

16.
Using economizer in R-744 heat pump cycle is an effective way to improve the heating capacity in cold climates. In this paper, a modification construction of reciprocating compressor with economizer port, a Voorhees compressor was introduced and the heat pump cycle with Voorhees economizer was compared with the traditional screw or scroll economizer cycles. Both the R-744 transcritical heat pumps with and without Voorhees economizer were tested at the same conditions with different air mass flow rates and different evaporating temperatures. The results show that the heating capacity of the heat pump with Voorhees economizer can be two times higher than the transcritical heat pump without economizer at low evaporating temperature conditions. At the same capacity operation conditions, the efficiency of the heat pump with Voorhees economizer is higher at high refrigerant mass flow rate conditions. The optimum discharge pressure of the heat pump with Voorhees economizer is found to be higher than the heat pump without economizer at the same ambient conditions. For mobile heat pump application, CO2 transcritical heat pump with Voorhees economizer demonstrates better performance comparing to the conventional transcritical CO2 heat pump without economizer when the evaporating temperature is lower than −20 °C, or when the mobile is idling with low compressor RPM.  相似文献   

17.
In order to achieve widespread use of heat pumps across the full spectrum of potential applications, it is critical that the first cost of the units is acceptable. There are many factors influencing this cost, including the number of units manufactured, the ease of installation, the complexity of the control requirements, and the cost of the working fluid(s). A common feature of all heat pump cycles is the presence of at least one heat exchanger, indeed some heat-driven cycles are composed almost entirely of heat exchangers, each having a different but critical role to play. There are several important aspects of heat exchangers that can help to reduce first cost of these components and the system, (in addition to the possible positive impact on coefficient of performance). Two of these are discussed here — compact heat exchangers (CHEs) and heat transfer enhancement. The latter may be directly associated with CHEs but can be equally beneficial in reducing approach temperature differences in 'conventional' shell and tube heat exchangers. Both are essential features of many intensified processes, which the author argues need compatible heat pumps if the market for the latter is to flourish. In this paper, the most recent types of CHE are described, with emphasis on the benefits they can bring to heat pump first cost and performance. Heat transfer enhancement in heat pumps is also reviewed.  相似文献   

18.
This paper presents the cooling performance of several CO2/propane mixtures measured in air-conditioning test rig at several conditions. The discharge pressure of CO2/propane mixtures is reduced with increasing mole fraction of propane and their reduced values coincide approximately with the circulation concentrations of propane. Since propane is the refrigerant having a higher refrigerating effect and a much lower vapor density than CO2, adding propane to CO2 improves the system efficiency and reduces the cooling capacity. The temperature glide effect of CO2/propane mixtures on the cooling performance was analyzed based on the experimental data. To utilize the temperature glide effect successfully, a sufficient heat exchange area is required, and the temperature gradient of refrigerant must be similar to that of secondary heat transfer fluid. It is better the temperature change of refrigerant can prevent pinching with that of the secondary heat transfer fluid.  相似文献   

19.
This paper presents an overview of the flow boiling heat transfer characteristics and the special thermo-physical properties of CO2 at low temperatures (down to −30 °C). Subsequently, the boiling heat transfer of CO2 at low temperatures is experimentally investigated in a horizontal tube with inner diameter of 4.57 mm. Due to the large surface tension, the boiling heat transfer coefficient of CO2 is found to be much lower at low temperatures but it increases with vapour quality (until dryout), which is contrary to the trend at high temperatures around 0 °C. None of the empirical correlations from open literature were able to predict the boiling heat transfer coefficient for CO2 in good agreement with the experimental data, suggesting the need for further research in this area.  相似文献   

20.
Micro heat pumps, with dimensions in the order of centimetres, may in the future be utilised for the heating and/or cooling of buildings, vehicles, clothing, and other products or applications. A number of issues have yet to be solved, including the construction of a microscale compressor, and determination of micro heat exchanger heat transfer capacities. Test samples of micro heat exchangers and a corresponding test apparatus have been built. Some two-phase experiments with propane (R-290) as refrigerant have been conducted. Preliminary results for a micro condenser with 0.5 mm wide trapezoidal channels of 25 mm length showed that a heat flux of up to 135 kW/m2, based on the refrigerant-side area, was attainable. The corresponding overall heat transfer coefficient was 10 kW/(m2 K), with a refrigerant mass flux of 165 kg/(m2 s) and a refrigerant-side pressure drop of 180 kPa/m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号