首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is commonly held that next generation mobile systems will be developed on the Internet in combination with diverse access technologies, as the future network architecture will be the coming together of various overlapping wireless access networks. Integrating various wireless networks in future heterogeneous networking environments poses many difficulties, the most critical challenge of which is efficient support for seamless mobility. SIP is a promising nominee for managing mobility in heterogeneous networks as it provides mobility within the application layer and the characteristics of the lower layer protocols are invisible to it. However, the performance of SIP-based mobility management is downgraded, resulting from its adoption of TCP/UDP for signaling and its strict separation between the lower layers and the application layer of the protocol stack. In this paper, a SIP-based cross-layer design for fast handoffs is proposed to shorten the service interruption time when a mobile node crosses the overlapped area of a WLAN/3G cellular system. As will be shown by the simulation results, the SIP-based solution proposed in this paper effectively lessens the handoff delays caused by either the horizontal handoff or vertical handoff in future all-IP heterogeneous wireless networks.  相似文献   

2.
Cellular is the inevitable architecture for the Personal Communication Service system (PCS) in the coming future. Access to the Internet via cellular networks is expected to become an essential portion of future wireless service offerings. Providing seamless support for IP based packet switched services has become an important issue.The Internet Engineering Task Force's (IETF's) mobile IP protocol offers a standard solution for wide-area mobility at the IP layer. However, Mobile IP does not solve all of the problems involved in providing mobile Internet access to cellular users, especially during handoff period. Thus, IPv6 might be a good candidate to solve this problem.IPv6 is a new version of the Internet Protocol that was standardized by the IETF. It supports mobility and is presently being standardized by the IETF Mobile IP Working Group. At the same time, cellular is an inevitable architecture for the Personal Communication Service system (PCS).This paper introduces the current cellular support based on the Mobile Internet Protocol version 6. We will point out the short-falls using Mobile IP and try to emphasize protocols especially for mobile management schemes that can optimize a high speed mobile station moving among small wireless cells. A comparison between those schemes and future work will be presented.  相似文献   

3.
Gyasi-Agyei  A. 《IEEE network》2001,15(6):10-22
Realistic realization and mass acceptance of mobile data services require networking architectures offering acceptable quality of service and attractive tariffs. A novel strategy for this goal is maximum integration of popular data networking standards and their infrastructure into wireless networks. This article discusses a Mobile IP-based network architecture to provide IP services in DECT to support IMT-2000 applications. DECT offers micromobility within multicell subnets, while Mobile IP supports macromobility between multicell subnets. Incorporating Mobile IP into the DECT handoff mechanism in this way extends DECT micromobility with IP macromobility. Also, utilizing fast, seamless DECT handoff management reduces Mobile IP handoff delay to circumvent TCP throughput degradation during handoff and reduce frequency of Mobile IP signaling over the ether to conserve spectral efficiency. This feature seamlessly unifies DECT with the global Internet. Seamless integration of DECT with the Internet is crucial due to the continuing phenomenal popularity of the Internet and wireless communications, and ubiquity of DECT systems. To achieve the above DECT/IP interworking efficiently, the architecture introduces a network entity called a DECT service switching point, which is an extended DECT central control fixed part. DECT network-level services are mapped onto those of the IETF integrated services architecture to maintain QoS provided by DECT in the backbone Internet. Mobile Resource Reservation Protocol, an extended RSVP tailored to mobile networking, is adopted to provide the needed signaling in IntServ. The proposed architecture preserves traditional non-IP based services such as PSTN voice  相似文献   

4.
Mobility support in wireless Internet   总被引:7,自引:0,他引:7  
The tremendous advancement and popularity of wireless access technologies necessitates the convergence of multimedia (audio, video, and text) services on a unified global (seamless) network infrastructure. Circuit-switched proprietary telecommunication networks are evolving toward more cost-effective and uniform packet-switched networks such as those based on IP. However, one of the key challenges for the deployment of such wireless Internet infrastructure is to efficiently manage user mobility. To provide seamless services to mobile users, several protocols have been proposed over the years targeting different layers in the network protocol stack. In this article we present a cross-layer perspective on the mobility protocols by identifying the key features of their design principles and performance issues. An analysis of the signaling overhead and handoff delay for some representative protocols in each layer is also presented. Our conclusion is that although the application layer protocol is worse than the protocols operating in the lower layers, in terms of handoff delay and signaling overhead, it is better suited as a potential mobility solution for the next-generation heterogeneous networks, if we consider such factors as protocol stack modification, infrastructure change, and inherent operational complexity.  相似文献   

5.
周云  王一鸿  王莹  张平 《电子与信息学报》2007,29(12):3031-3034
未来的通信网络将融合、协同多种异构网络。IETF提出的移动IP(MIP)能够将各种网络统一到单一的IP信息平台。本文重点分析了影响MIP切换时延的移动检测机制:LCS,ECS。提出了异构重叠网络下跨层优化快速检测机制。理论分析和仿真均表明由于得到了来自链路层信息的辅助,该方法能有效地降低切换时延,减少丢包,提高通信服务质量。  相似文献   

6.
Over the last decade, we have witnessed a growing interest in the design and deployment of various network architectures and protocols aimed at supporting mobile users as they move across different types of networks. One of the goals of these emerging network solutions is to provide uninterrupted, seamless connectivity to mobile users giving them the ability to access information anywhere, anytime. Handoff management, an important component of mobility management, is crucial in enabling such seamless mobility across heterogeneous network infrastructures. In this work, we investigate the handoff performance of three of the most widely used mobility protocols namely, Mobile IP, Session Initiation Protocol (SIP), and Stream Control Transmission Protocol (SCTP). Our empirical handoff tests were executed on an actual heterogeneous network testbed consisting of wired, wireless local area, and cellular networks using performance metrics such as handoff delay and handoff signaling time. Our empirical results reveal that Mobile IP yields the highest handoff delay among the three mobility protocols. In addition, we also found that SIP and SCTP yield 33 and 55% lower handoff delays respectively compared to Mobile IP.  相似文献   

7.
The integration of a multitude of wireless networks is expected to lead to the emergence of the fourth generation (4G) of wireless technologies. Under the motivation of increasing the levels of user satisfaction while maintaining seamless connectivity and a satisfactory level of QoS, we design a novel cross-layer architecture that provides context-awareness, smart handoff and mobility control in heterogeneous wireless IP networks. We develop a Transport and Application Layer Architecture for vertical Mobility with Context-awareness (Tramcar). Tramcar presents a new approach to vertical handoff decisions, which is not exclusively based on network characteristics but also on higher level parameters which fall in the application and transport layers. Tramcar is tailored for a variety of different network technologies with different characteristics and has the ability of adapting to changing environment conditions and unpredictable background traffic. Furthermore, Tramcar allows users to identify and prioritize their preferences. Tramcar is a smart and practical system, which is more capable of dealing with 4G challenges. Simulation results demonstrate that Tramcar increases user satisfaction levels and network throughput under rough network conditions and reduces overall handoff latencies.  相似文献   

8.
Applications using traditional protocol stacks (e.g., TCP/IP) from wired networks do not function efficiently in mobile wireless environments. This is primarily due to the layered architecture and implementation of protocol stacks. One mechanism to improve the efficiency of the stack is cross-layer feedback, that is, making information from within one layer available to another layer of the stack. For example, TCP retransmissions can be reduced by making it aware of network disconnections or handoff events. We highlight the need for a cross-layer feedback architecture and identify key design goals for an architecture. We present our ECLAIR architecture, which satisfies these design goals. We describe a prototype implementation that validates ECLAIR. We also discuss other cross-layer architectures and provide a cross-layer design guide.  相似文献   

9.
Seamless SIP-based mobility for multimedia applications   总被引:4,自引:0,他引:4  
Application-level protocol abstraction is required to support seamless mobility in next-generation heterogeneous wireless networks. Session initiation protocol (SIP) provides the required abstraction for mobility support for multimedia applications in such networks. However, the handoff procedure with SIP suffers from undesirable delay and hence packet loss in some cases, which is detrimental to applications like voice over IP (VoIP) or streaming video that demand stringent quality of service (QoS) requirements. In this article we present a SIP-based architecture that supports soft handoff for IP-centric wireless networks. Soft handoff ensures that there is no packet loss and that the end-to-end delay jitter is kept under control.  相似文献   

10.
The growing demand for seamless invocation of different multimedia services from handheld devices anytime anywhere is the main driving force for drawing attention in the area of mobility management. Although Session Initiation Protocol (SIP) based mobility solution is very efficient for real-time services, Mobile IP is required to handle mobility of the mobile node (MN) at the network layer. We have extensively studied and explored some existing mobility management methods integrating the functionalities of Mobile IP and SIP in this paper. These schemes require support of IP encapsulation at the protocol stack of correspondent node (CN). To address the above problem, we have proposed in this paper, certain modification at the IP layer of Base Station (BS) that also reduces the bandwidth consumption. Moreover, service provisioning in a continuous way in public places like airport, university campus etc., requires to integrate some micro-mobility protocol with the existing mobility management methods to reduce the handoff disruption time in case of intradomain handoff. Thus, in this paper, we have proposed two new hybrid mobility management schemes that integrate two existing Mobile IP and SIP-based schemes where the proposed modification in the IP layer of BS is incorporated separately with the micro-mobility protocol Hierarchical Mobile IP (HMIP). The numerical results show that the integration of HMIP into the existing methods reduces both the signaling cost and the delay, mainly the active handoff disruption time. Simulation results on NS-2 demonstrate the performance improvement of the proposed mobility management schemes over the existing methods in terms of handoff delay.  相似文献   

11.
Broadband wireless technologies will soon become an integral part of daily life. In this paper we present the design rationale of a context-aware mobility management architecture for seamless handover in heterogeneous networks. Our proposal is a new cross-layer and interactive approach to seamless handover of users and their services. We present a simple though effective analytical model in typical deployment scenarios in heterogeneous networks with the use of the IEEE Media Independent Handover services. Such analytical model is used to evaluate the resulting handover delay when deploying common mobility protocols in our architecture, such as Mobile IP, Hierarchical MIP, and Proxy MIP.  相似文献   

12.
In the future, wireless and mobile users will have increased demands for seamless roaming across different types of wireless networks, quality of service guarantees, and support for a variety of services. This awareness has led to research activities directed toward intersystem and global roaming, and can be noticed in numerous products like multimode handsets, interworking gateways, and ongoing standards and research work on intersystem roaming. The authors of this article proposed a global mobility management framework to support seamless roaming across heterogeneous wireless networks. In this article we provide details on the use of the framework to support roaming across cellular and wireless local area networks. Highlights of the framework include a robust architecture for mobility management for varying user mobility spans, provisioning for QoS mapping, intersystem message translation, and mechanisms in the WLAN to support user-subscribed services. Performance aspects related to handoff delays, data redirection, and processing overheads are presented and discussed. Performance comparison of intersystem roaming between cellular and WLAN with and without the framework is presented.  相似文献   

13.
Intelligent Handoff for Mobile Wireless Internet   总被引:6,自引:0,他引:6  
This paper presents an intelligent mobility management scheme for Mobile Wireless InterNet – MWIN. MWIN is a wireless service networks wherein its core network consisting of Internet routers and its access network can be built from any Internet-capable radio network. Two major standards are currently available for MWIN, i.e., the mobile IP and wireless LAN. Mobile IP solves address mobility problem with the Internet protocol while wireless LAN provides a wireless Internet access in the local area. However, both schemes solve problems independently at different layers, thereby some additional problems occur, e.g., delayed handoff, packet loss, and inefficient routing. This paper identifies these new problems and performs analyses and some real measurements on the handoff within MWIN. Then, a new handoff architecture that extends the features of both mobile IP and wireless LAN handoff mechanism was proposed. This new architecture consists of mobile IP extensions and a modified wireless LAN handoff algorithm. The effect of this enhancement provides a linkage between different layers for preventing packet loss and reducing handoff latency. Finally, some optimization issues regarding network planning and routing are addressed.  相似文献   

14.
移动IP无缝切换技术研究   总被引:2,自引:0,他引:2  
移动IP协议是宏移动管理方案,但它不支持无缝切换.针对移动I P的不足,人们提出了许多改进方案来增强其性能.根据切换过程的技术特征,文章从基于缓存和转发机制的切换、基于减少组件延时的切换、基于上下文转移的切换和基于候选访问路由器发现策略的切换等角度,对增强移动IP性能的各种无缝切换技术进行了研究.  相似文献   

15.
In the future, mobility support will require handling roaming in heterogeneous access networks. In order to enable seamless roaming it is necessary to minimize the impact of the vertical handoffs. Localized mobility management schemes such as Fast Handovers for Mobile IPv6 (FMIPv6) and Hierarchical Mobile IPv6 do not provide sufficient handoff performance, since they have been designed for horizontal handoffs. In this paper, we propose the SafetyNet protocol, which allows a Mobile Node to perform seamless vertical handoffs. Further, we propose the SafetyNet handoff timing algorithm, to enable a Mobile Node to delay or even completely avoid upward vertical handoffs. We implement the SafetyNet protocol and compare its performance with the FMIPv6 protocol in our wireless test bed and analyze the results. The experimental results indicate that the proposed SafetyNet protocol can provide an improvement of up to 95% for TCP performance in vertical handoffs, when compared with FMIPv6 and an improvement of 64% over FMIPv6 with bicasting. We use numerical analysis of the protocol to show that its over the air signaling and data transmission overhead is comparable to FMIPv6 and significantly smaller than that of FMIPv6 with bicasting.  相似文献   

16.
Vertical handoffs in fourth-generation multinetwork environments   总被引:10,自引:0,他引:10  
Revolutionary drivers for 4G include a push toward universal wireless access and ubiquitous computing through seamless personal and terminal mobility. One of the major challenges for seamless mobility is the criterion of a vertical handoff protocol: a handoff protocol for users that move between different types of networks. Traditional operations for handoff detection policies, decision metrics, and radio link transfer are not able to adapt to dynamic handoff criteria or react to user inputs and changing network availabilities. Nor are they able to deliver context-aware services or ensure network interoperability. Thus, new techniques are needed to manage user mobility between different types of networks. This article presents a tutorial on the design and performance issues for vertical hand-off in an envisioned multinetwork fourth-generation environment. Various network architectures and technologies for 3G and beyond are described, including wireless LANs, cellular, satellite, and Mobile IP. Then the problem of vertical handoff is defined in the context of such a diverse network environment. Finally, research efforts to resolve the open problems are explored, including new techniques for dynamic handoff decision and detection algorithms and context-aware radio link transfer.  相似文献   

17.
Mobile ATM offers a common wired network infrastructure to support mobility of wireless terminals, independent of the wireless access protocol. In addition, it allows seamless migration to future wireless broadband services, such as wireless ATM, by enabling mobility of end-to-end ATM connections. In spite of the diversity in mobile networking technologies (e.g., cellular telephony, mobile-IP, packet data services, PCS), all of them require two fundamental mechanisms: location management and handoff. This article describes different schemes for augmenting a wired ATM network to support location management of mobile terminals and handoff protocols for rerouting a connection data path when the endpoint moves. A prototype implementation of mobile ATM integrating mobility support with ATM signaling and connection setup, is presented. It shows how mobile ATM may be used to provide mobility support to an IP terminal using non-ATM wireless access  相似文献   

18.
This article describes current and proposed protocols for mobility management for public land mobile networks (PLMNs), Mobile IP, wireless ATM, and satellite networks. The integration of these networks is discussed in the context of the next evolutionary step of wireless communications networks. First, a review is provided of location management algorithms for PCS implemented over a PLMN. The latest protocol changes for location registration and handoff are investigated for Mobile IP, followed by a discussion of proposed protocols for wireless ATM and satellite networks. Finally, an outline of open problems to be addressed by the next generation of wireless network service is discussed  相似文献   

19.
The introduction of the IP multimedia subsystem on 3G cellular networks and the integration with other widely deployed wireless networks based on the IEEE 802.11 protocol family require support for both mobility and quality of service. When mobile systems move across heterogeneous networks, ongoing real-time sessions are affected not only by handoff delay but also by different packet delay and bit rate. In this paper, we propose a cross-layer mechanism that takes into account mobility at different layers of the network stack in order to yield better quality for VoIP, videoconferencing, and other real-time applications. We describe our cross-layer architecture, adaptation techniques, a prototype implementation, and experimental results.  相似文献   

20.
A key word describing next generation wireless networks is ‘seamless’. Wireless fourth generation (4G) networks represent a set of new technologies that will enable seamless integration of various wireless access systems, while targeting to support various sophisticated and quality of service constraining applications, such as high‐speed data services and multimedia services. This paper first proposes an architecture for 4G networks. The most significant feature of this architecture is its flexibility, openness and ability to enable seamless handoff in a single logical overlay network composed of many heterogeneous access networks. A medium access control (MAC) protocol for basic access networks is then introduced. A generic scheduling scheme, named CS‐EDF (channel state‐earliest deadline first) and the details of an efficient handoff management method are also briefly introduced. The bandwidth utilization, handoff resources reservation, and scheduling scheme performances of the proposed schemes are discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号