首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicon nitride ceramics were prepared by spark plasma sintering (SPS) at temperatures of 1450°–1600°C for 3–12 min, using α-Si3N4 powders as raw materials and MgSiN2 as sintering additives. Almost full density of the sample was achieved after sintering at 1450°C for 6 min, while there was about 80 wt%α-Si3N4 phase left in the sintered material. α-Si3N4 was completely transformed to β-Si3N4 after sintering at 1500°C for 12 min. The thermal conductivity of sintered materials increased with increasing sintering temperature or holding time. Thermal conductivity of 100 W·(m·K)−1 was achieved after sintering at 1600°C for 12 min. The results imply that SPS is an effective and fast method to fabricate β-Si3N4 ceramics with high thermal conductivity when appropriate additives are used.  相似文献   

2.
In this paper, a new net-shaping process, an hydrolysis-induced aqueous gelcasting (GC) (GCHAS) has been reported for consolidation of β-Si4Al2O2N6 ceramics from aqueous slurries containing 48–50 vol%α-Si3N4, α-Al2O3, AlN, and Y2O3 powders mixture. Dense ceramics of same composition were also consolidated by aqueous GC and hydrolysis assisted solidification routes. Among three techniques used, the GCHAS process was found to be superior for fabricating defect-free thin wall β-Si4Al2O2N6 crucibles and tubes. Before use, the as purchased AlN powder was passivated against hydrolysis. The sintered β-Si4Al2O2N6 ceramics exhibited comparable properties with those reported for similar materials in the literature.  相似文献   

3.
The influence of phase formation on the dielectric properties of silicon nitride (Si3N4) ceramics, which were produced by pressureless sintering with additives in MgO–Al2O3–SiO2 system, was investigated. It seems that the difference in the dielectric properties of Si3N4 ceramics sintered at different temperatures was mainly due to the difference of the relative content of α-Si3N4, β-Si3N4, and the intermediate product (Si2N2O) in the samples. Compared with α-Si3N4 and Si2N2O, β-Si3N4 is believed to be a major factor influencing the dielectric constant. The high-dielectric constant of β-Si3N4 could be attributed to the ionic relaxation polarization.  相似文献   

4.
Starting from Si powder, NaN3 and different additives such as N -aminothiourea, iodine, or both, Si3N4 nanomaterials were synthesized through the nitridation of silicon powder in autoclaves at 60°–190°C. As the additive was only N -aminothiourea, β-Si3N4 nanorods and α-Si3N4 nanoparticles were prepared at 170°C. If the additive was only iodine, α-Si3N4 dendrites with β-Si3N4 nanorods were obtained at 190°C. However, when both N -aminothiourea and iodine were added to the system of Si and NaN3, the products composed of β-Si3N4 nanorods and α, β-Si3N4 nanoparticles could be prepared at 60°C.  相似文献   

5.
Dense β-Si3N4 with various Y2O3/SiO2 additive ratios were fabricated by hot pressing and subsequent annealing. The thermal conductivity of the sintered bodies increased as the Y2O3/SiO2 ratio increased. The oxygen contents in the β-Si3N4 crystal lattice of these samples were determined using hot-gas extraction and electron spin resonance techniques. A good correlation between the lattice oxygen content and the thermal resistivity was observed. The relationship between the microstructure, grain-boundary phase, lattice oxygen content, and thermal conductivity of β-Si3N4 that was sintered at various Y2O3/SiO2 additive ratios has been clarified.  相似文献   

6.
In this work, self-reinforced silicon nitrides with β-Si3N4 seeds doped with Re2O3 (Re=Yb, Lu) were investigated. Firstly, the two kinds of seeds were obtained by heating α-Si3N4 powder with Yb2O3 or Lu2O3, respectively. Then the self-reinforced silicon nitride ceramics were prepared by HP-sintering of α-Si3N4 powder, Re2O3 as additive, and the as-prepared seeds. Oxidation test was carried out at 1400°C in air for 100 h with thermogravimetry analysis (TGA) measurement. Mechanical properties, scanning electronic microscopy microstructures, and X-ray diffraction patterns were measured before and after oxidation. The results indicated that the introduction of the seeds doped with Re2O3 (Re=Yb, Lu) could obviously increase the toughness and keep the room temperature and high-temperature strength of the ceramics at high values. After oxidation, the crystalline phase in grain boundary changed and the mechanical properties decreased. TGA showed a parabolic weight gain and the oxidation mechanism was discussed.  相似文献   

7.
Fine Si3N4-SiC composite powders were synthesized in various SiC compositions to 46 vol% by nitriding combustion of silicon and carbon. The powders were composed of α-Si3N4, β-Si3N4, and β-SiC. The reaction analysis suggested that the SiC formation is assisted by the high reaction heat of Si nitridation. The sintered bodies consisted of uniformly dispersed grains of β-Si3N4, β-SiC, and a few Si2N2O.  相似文献   

8.
The microstructure of a pressureless sintered (1605°C, 90 min) O'+β' SiAlON ceramic with CeO2 doping has been investigated. It is duplex in nature, consisting of very large, slablike elongated O' grains (20–30 μm long), and a continuous matrix of small rodlike β' grains (< 1.0 μm in length). Many α-Si3N4 inclusions (0.1–0.5 μm in size) were found in the large O' grains. CeO2-doping and its high doping level as well as the high Al2O3 concentration were thought to be the main reasons for accelerating the reaction between the α-Si3N4 and the Si-Al-O-N liquid to precipitate O'–SiAlON. This caused the supergrowth of O' grains. The rapid growth of O' crystals isolated the remnant α–Si3N4 from the reacting liquid, resulting in a delay in the α→β-Si3N4 transformation. The large O' grains and the α-Si3N4 inclusions have a pronounced effect on the strength degradation of O'+β' ceramics.  相似文献   

9.
The development of microstructure in hot-pressed SiaN4 was studiehd for a typical Si3N4 powder with and without BeSiN2 as a densification aid. The effect of hot-pressing temperature on density, α- to β-Si3N4 conversion and specific surface area showed that BeSiN2 appears to increase the mobility of the system by enhancing densification, α- to β-Si3N4 transformation, and grain growth at temperatures between 1450° and 1800°. These processes appear to occur in the presence of a liquid phase.  相似文献   

10.
β-Si3N4 ceramics sintered with a series of rare-earth (RE = La, Nd, Gd, Y, Yb and Sc) oxide additives were fabricated by hot pressing and subsequent annealing. Their microstructures, lattice oxygen contents, and thermal conductivities were evaluated. Mean grain size increased, while lattice oxygen content decreased, and hence, thermal conductivity increased with decreasing ionic radius of the rare-earth element. In all cases, a marked change was observed in the order of ionic radius from La to Nd to Gd, and a little change was observed below them. Rare-earth oxide additives significantly influenced the thermal conductivity of β-Si3N4, unlike in the case of AlN.  相似文献   

11.
Si3N4/SiC composite materials have been fabricated by reaction-sintering and postsintering steps. The green body containing Si metal and SiC particles was reaction-sintered at 1370°C in a flowing N2/H2 gas mixture. The initial reaction product was dominated by alpha-Si3N4. However, as the reaction processed there was a gradual increase in the proportion of β-Si3N4. The reaction-bonded composite consisting of alpha-Si3N4, β-Si3N4, and SiC was heat-treated again at 2000°C for 150 min under 7-MPa N2 gas pressure. The addition of SiC enhanced the reaction-sintering process and resulted in a fine microstructure, which in turn improved fracture strength to as high as 1220 MPa. The high value in flexural strength is attributed to the formation of uniformly elongated β-Si3N4 grains as well as small size of the grains (length = 2 μm, thickness = 0.5 μm). The reaction mechanism of the reaction sintering and the mechanical properties of the composite are discussed in terms of the development of microstructures.  相似文献   

12.
Impurity phases in commercial hot-pressed Si3N4 were investigated using transmission electron microscopy. In addition to the dominant, β-Si3N4 phase, small amounts of Si2N2O, SiC, and WC were found. Significantly, a continuous grain-boundary phase was observed in the ∼ 25 high-angle boundaries examined. This film is ∼ 10 Å thick between, β-Si3N4 grains and ∼ 30 Å thick between Si2N2O and β-Si3N4 grains.  相似文献   

13.
α-Si3N4 core structures within β-Si3N4 grains have been studied by transmission electron microscopy. The grains were dispersed in an oxynitride glass which was previously melted at 1600°C. The cores were topotactically related to the as-grown β-Si3N4 crystallites and are related to epitactical nucleation during heat treatment as the most probable mechanism.  相似文献   

14.
α/β-Si3N4 composites with various α/β phase ratios were prepared by hot pressing at 1600°–1650°C with MgSiN2 as sintering additives. An excellent combination of mechanical properties (Vickers indentation hardness of 23.1 GPa, fracture strength of about 1000MPa, and toughness of 6.3 MPa·m1/2) could be obtained. Compared with conventional Si3N4-based ceramics, this new material has obvious advantages. It is as hard as typical in-situ-reinforced α-Sialon, but much stronger than the latter (700 MPa). It has comparable fracture strength and toughness, but is much harder than β-Si3N4 ceramics (16 GPa). The microstructures and mechanical properties can be tailored by choosing the additive and controlling the heating schedule.  相似文献   

15.
Silicon nitride (Si3N4) was synthesized by a selective combustion reaction of silicon powder with nitrogen in air. The α/β-Si3N4 ratio of the interior product could be tailored by adjusting the Si3N4-diluent content in the reactant mixtures. The synthetic β-Si3N4 showed a well-crystallized rod-like morphology. Mechanical activation greatly enhanced the reactivity of silicon powder, and the slow oxidation of silicon at the sample surface promoted the combustion reaction in air. The formation mechanism of Si3N4 was analyzed based on a proposed N2/O2 diffusion kinetic model, and the calculated result is in good agreement with the experimental phenomenon.  相似文献   

16.
Silicon nitride nanowires or nanorods have been synthesized from SiCl4, NaN3, and metallic Mg at temperatures ranging from 200° to 300°C. X-ray powder diffraction patterns indicated that the as-obtained products were mainly β-Si3N4. Scanning electron microscope and high-resolution transmission electronic microscopy showed that the samples mostly consisted of Si3N4 nanowires or nanorods. As metallic iron powder was used, α-Si3N4 was mainly formed at 250°C.  相似文献   

17.
The crystal structure and phonon densities of states (DOS) of β-SiAlON ceramics, Si6_ z Al z O z N8-z (0 < z < 4), prepared by a novel slipcast method, are studied by neutron-scattering techniques. The samples with z < 4 form a single-phase solid solution of Si-Al-O-N isostructural to β-Si3N4 (space group P 6 3/m). A consistent preferential occupation of the 2c sites by oxygen atoms and the 6 h sites by nitrogen atoms exists within this structure. The phonon DOS of β'-SiAlON displays phonon bands at ∼50 and 115 meV. These features are considerably broader than the corresponding ones in β-Si3N4 powder.  相似文献   

18.
The 1780°C isothermal section of the reciprocal quasiternary system Si3N4-SiO2-BeO-Be3N2 was investigated by the X-ray analysis of hot-pressed samples. The equilibrium relations shown involve previously known compounds and 8 newly found compounds: Be6Si3N8, Be11Si5N14, Be5Si2N6, Be9Si3N10, Be8SiO4N4, Be6O3N2, Be8O5N2, and Be9O6N2. Large solid solubility occurs in β-Si3N4, BeSiN2, Be9Si3N10, Be4SiN4, and β-Be3N2. Solid solubility in β-Si3N4 extends toward Be2SiO4 and decreases with increasing temperature from 19 mol% at 1770°C to 11.5 mol% Be2SiO4 at 1880°C. A 4-phase isotherm, liquid +β-Si3N4 ( ss )Si2ON2+ BeO, exists at 1770°C.  相似文献   

19.
The in situ β-Si3N4/α'-SiAlON composite was studied along the Si3N4–Y2O3: 9 AlN composition line. This two phase composite was fully densified at 1780°C by hot pressing Densification curves and phase developments of the β-Si3N4/α'-SiAlON composite were found to vary with composition. Because of the cooperative formation of α'-Si AlON and β-Si3N4 during its phase development, this composite had equiaxed α'-SiAlON (∼0.2 μm) and elongated β-Si3N4 fine grains. The optimum mechanical properties of this two-phase composite were in the sample with 30–40%α', which had a flexural strength of 1100 MPa at 25°C 800 MPa at 1400°C in air, and a fracture toughness 6 Mpa·m1/2. α'-SiAlON grains were equiaxed under a sintering condition at 1780°C or lower temperatures. Morphologies of the α°-SiAlON grains were affected by the sintering conditions.  相似文献   

20.
The kinetics of anisotropic β-Si3N4 grain growth in silicon nitride ceramics were studied. Specimens were sintered at temperatures ranging from 1600° to 1900°C under 10 atm of nitrogen pressure for various lengths of time. The results demonstrate that the grain growth behavior of β-Si3N4 grains follows the empirical growth law Dn– D0n = kt , with the exponents equaling 3 and 5 for length [001] and width [210] directions, respectively. Activation energies for grain growth were 686 kJ/mol for length and 772 kJ/mol for width. These differences in growth rate constants and exponents for length and width directions are responsible for the anisotropy of β-Si3N4 growth during isothermal grain growth. The resultant aspect ratio of these elongated grains increases with sintering temperature and time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号