首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用纳米压痕仪和扫描探针显微镜对Mo-Nb合金单晶(110)、(111)、(112)晶面的载荷-位移曲线、弹性模量,压痕形貌、纳米硬度-加载深度以及弹性回复率的变化进行了研究。结果表明,Mo-Nb单晶具有较好的塑性变形能力,Mo-Nb单晶的各晶面在加载和卸载过程中分别经历了弹性变形和塑性变形阶段,荷载-位移曲线未出现突进或突退现象,表明在加载和卸载过程中压痕内部未产生裂纹或脆性断裂;材料的残余压痕呈现凸起形貌,表明Mo-Nb单晶有相对较低的加工应变硬化趋势;采用连续刚度法测量了Mo-Nb单晶的纳米硬度和弹性模量,3个晶面的纳米硬度均呈现出随着加载深度的增加而减小的趋势,表现出明显的压痕尺寸效应;3个晶面纳米硬度和弹性模量的大小关系为:(110)晶面(112)晶面(111)晶面;基于Nix-Gao模型计算了(110)、(111)、(112)晶面的无压痕尺寸效应时的纳米硬度(H_0)分别为3.96、2.61和3.47 GPa,尺寸效应因子(i)分别为0.18、0.16和0.18,微观特征长度(h*)分别为1196、2753和1559 nm。压入深度小于微观特征长度时,Mo-Nb单晶具有明显的尺寸效应,压入深度超过该长度时,尺寸效应将减弱,当压入深度分别超过4106、5645和4693 nm时,纳米压痕尺寸效应将消失。  相似文献   

2.
利用纳米压痕仪和扫描探针显微镜对高纯钨单晶的载荷-位移曲线、弹性模量、压痕形貌、纳米硬度-加载深度以及弹性回复率的变化情况进行了研究。结果表明,W(111)晶面在加载和卸载过程中分别经历了弹性变形和塑性变形阶段,荷载-位移曲线未出现不连续现象,表明在加载过程中压痕内部未产生裂纹或脆性断裂;钨单晶的残余压痕表现出堆积形貌,表明钨单晶有较低的加工应变硬化趋势;采用连续刚度法测量了钨单晶的纳米压痕硬度以及弹性模量,结果表明,钨单晶纳米压痕硬度和弹性模量存在尺寸效应,即随着加载深度的增加,单晶的纳米压痕硬度和弹性模量减小;采用Nix-Gao模型对钨单晶的纳米压痕力学特征进行了分析,计算了钨单晶的微观特征长度(h*)为1490 nm,无压痕尺寸效应时的纳米硬度值(H0)为6.79 GPa,尺寸效应因子(m)为0.18,即压入深度小于1490 nm时,钨单晶具有明显的尺寸效应,当压入深度超过1490 nm时,尺寸效应将减弱。当压入深度超过2450 nm时,钨单晶的纳米尺寸效应将消失。  相似文献   

3.
钨单晶纳米压痕尺寸效应研究   总被引:1,自引:0,他引:1  
利用纳米压痕仪和扫描探针显微镜对高纯钨单晶的载荷-位移曲线、弹性模量、压痕形貌、纳米硬度-加载深度以及弹性回复率的变化情况进行了研究。结果表明,W(111)晶面在加载和卸载过程中分别经历了弹性变形和塑性变形阶段,荷载-位移曲线未出现不连续现象,表明在加载过程中压痕内部未产生裂纹或脆性断裂;钨单晶的残余压痕表现出堆积形貌,表明钨单晶有较低的加工应变硬化趋势;采用连续刚度法测量了钨单晶的纳米压痕硬度以及弹性模量,结果表明,钨单晶纳米压痕硬度和弹性模量存在尺寸效应,即随着加载深度的增加,单晶的纳米压痕硬度和弹性模量减小;采用 Nix-Gao 模型对钨单晶的纳米压痕力学特征和进行了分析,计算了钨单晶的微观特征长度(h^*)为1490nm,无压痕尺寸效应时的纳米硬度值(H_0)为6.79GPa,尺寸效应因子(m)为0.18,即压入深度小于1490nm时,钨单晶具有明显的尺寸效应,当压入深度超过1490nm时,尺寸效应将减弱。当压入深度超过2450nm时,钨单晶的纳米尺寸效应将消失。  相似文献   

4.
为了研究锗单晶的压痕尺寸效应,对(100)、(110)和(111)晶面取向的锗单晶进行纳米压痕实验。基于Meyer方程、比例试样阻力(PSR)模型和Nix-Gao模型计算锗单晶各晶面无压痕尺寸效应时的真实硬度值,并基于Manika幂律关系计算锗单晶各晶面的尺寸效应因子。结果表明:锗单晶在加载过程中发生弹性变形、塑性变形和脆性断裂3个阶段,且3个晶面均表现出明显的尺寸效应现象。3种模型均能较好地描述锗单晶的尺寸效应,其中Nix-Gao模型的计算值最为准确。相比于其他两个晶面,Ge (110)的尺寸效应因子m值最高,且具有最高的硬度值,表明该晶面的塑性性能最差。  相似文献   

5.
基于准连续介质法预测薄膜材料纳米硬度和弹性模量   总被引:2,自引:0,他引:2  
黎军顽  江五贵 《金属学报》2007,43(8):851-856
采用准连续介质法模拟了单晶Al和单晶Cu纳米压痕实验中的初始塑性变形过程,获得了压头在不同压深下的加载和卸载曲线.在计算得到的载荷-压深曲线基础上,根据Oliver-Pharr法计算了薄膜材料的接触刚度、纳米硬度和弹性模量,并与相关文献的实验结果进行了比较.研究表明,接触刚度-位移曲线呈线性关系;纳米硬度测量中存在尺寸效应,而在弹性模量测量中却不存在尺寸效应.单晶Al和单晶Cu纳米硬度和弹性模量计算值分别为(0.584±0.013)和(84.088±0.332)GPa,(0.755±0.027)和(131.833±4.449)GPa.预测值与实验结果吻合,表明使用该方法预测薄膜材料的纳米硬度和弹性模量是可行的.  相似文献   

6.
为了考察单晶锗微纳米尺度脆塑转变机理,利用纳米压痕仪分别对单晶锗(100)、(110)和(111)晶面进行纳米划痕实验,并利用原子力显微镜和扫描电子显微镜对划痕形貌进行观察。通过对划痕深度-距离曲线及划痕形貌进行分析,获取各晶面脆塑转变临界载荷和临界深度。实验结果表明:单晶锗具有强烈的各向异性,(100)、(110)和(111)晶面脆塑转变临界载荷分别为37.6 mN、30.5 mN和32.4 mN,临界深度分别为594.7 nm、512.5 nm和536.6 nm。(100)晶面因其具有最小硬度、最深脆塑转变深度,在划痕过程中塑性去除最多,脆塑转变最晚,而且随着划痕速度的增加,脆塑转变临界深度和临界载荷也相应增加。最后定载荷划痕实验验证了脆塑转变临界载荷和临界深度的正确性。  相似文献   

7.
采用纳米压痕技术和原子力显微镜对铱(Ir)单晶(100)和(110)取向的载荷-位移曲线、弹性模量、压痕形貌、压痕硬度-加载深度等进行了研究。结果表明,Ir(100)与Ir(110)单晶的弹性模量分别为477和493 GPa;加载深度为10~2500 nm时,Ir单晶的纳米压痕硬度存在压痕尺寸效应,在10~500nm时表现更为强烈,表明随着加载深度的增加,单晶材料的硬度减小;基于Nix-Gao模型,计算出Ir(100)和Ir(110)单晶的纳米硬度H0分别为2.32和2.46 GPa,当加载深度分别大于4910和5220 nm时,Ir单晶的纳米硬度不存在尺寸效应,可作为金属铱硬度测试的重要依据;采用硬度和深度的幂律关系计算出Ir(100)和Ir(110)单晶的尺寸效应因子(m)分别为0.44和0.48,该值远远大于其他金属和半导体材料,这种反常现象可能与铱原子间的异常强的交互作用有关。  相似文献   

8.
采用纳米压痕仪对单晶锗进行变载荷纳米划痕实验和恒定载荷纳米划痕实验,分析不同划痕速度和不同载荷对单晶锗切削特性的影响规律;采用原子力显微镜对样品表面进行扫描观测,分析单晶锗微纳米尺度切削加工的材料去除机理。研究结果表明:划痕速度分别为10、20和50μm/s时,单晶锗(100)晶面脆塑转变临界切削力分别为10.2、12.1和9.8 mN,呈现先增大后减少的规律;单晶锗(110)晶面脆塑转变临界切削力分别为9.5、7.7和6.9 mN,呈现随着划痕速度的增大而减少的规律;单晶锗(111)晶面脆塑转变临界切削力分别为8.3、8.5和8.9m N,划痕速度的改变对于切削力的变化基本没有影响;当载荷分别为10、30和50m N时,单晶锗(110)晶面切削力分别为0.3、4.5和12.5 m N。随着划痕速度的增大,单晶锗不同晶面切削特性表现出明显的各向异性;随着载荷的增大,单晶锗切削力也相应增大,切削力的波动范围也越来越大。本研究为分析单晶锗微纳米尺度塑性域切削提供理论基础和数据支持。  相似文献   

9.
利用纳米压痕仪和原子力显微镜,分别对单晶锗Ge(100)、Ge(110)、Ge(111)3种晶向的表面进行纳米尺度下的摩擦磨损试验。在较大载荷的条件下,3种不同晶面取向的单晶锗磨损情况均呈现沟槽形式,沟槽两侧出现明显的碎屑堆积现象。在划痕试验过程中,单晶锗的磨损性能受晶面取向影响较小;单晶锗的摩擦力随着滑动速度的增加而增加。而且,随着滑动速度的增大,晶体表面出现严重的磨损-沟槽损伤,沟槽两侧碎屑堆积的体积也越来越大,沟槽的深度也逐渐增大;单晶锗在较低载荷下,摩擦力基本保持稳定,但随着载荷的增大,单晶锗的摩擦力呈非线性增长,载荷增大一定值时,晶体表面发生明显的由塑性变形向脆性破坏转变的脆塑转变过渡过程,导致单晶锗表面发生脆性剥离,形成沟槽两侧碎屑堆积。  相似文献   

10.
对分别在1 600℃、1 650℃、1 700℃条件下热压烧结制备的Si2N2O-Si3N4超细晶陶瓷进行纳米压痕试验测试,获得了材料的硬度值、弹性模量值和载荷-深度曲线。考虑试验中波士压针的磨损缺陷,通过理论和数值模拟相结合的方法,确定压针的尖端球面半径RBerk=500nm。以纳米压痕试验数据为依据,利用MSC.Marc有限元仿真软件模拟纳米压痕试验压针压入材料表面的过程,反推出所测试材料的应力应变关系曲线,其屈服应力随弹性模量的减小而降低,分别为47GPa、43GPa、35GPa。通过比较分析压痕区域的应变场和应力场,分析纳米压痕试验中材料的变形特征。  相似文献   

11.
采用微米压痕测试仪对TC17钛合金进行压痕实验,对比研究了不同处理制度下的微观力学性能。基于获得的压痕载荷-位移曲线,采用Oliver-Pharr(OP)方法计算了显微硬度及杨氏模量,分析了加载过程中材料的性能随压痕深度的变化。结果显示:当压入深度小于一定值时,硬度和弹性模量变化较大,均随压入深度的增加而减小,表现出明显的尺寸效应;当压入深度超过一定值后,硬度和弹性模量趋于稳定。对比发现:处理制度对材料性能有明显影响。  相似文献   

12.
采用纳米压痕仪对单晶锗开展变载荷与定载荷双划痕实验。通过扫描电子显微镜(SEM)观察了单晶锗的划痕形貌,并对划痕深度、残余深度、弹性回复率和摩擦因数等进行分析;同时结合双划痕应力场模型,揭示单晶锗材料的去除机制和损伤行为。结果表明:变载荷刻划时,材料会发生塑性变形、脆塑转变和脆性断裂;双次刻划过程中材料的脆塑转变临界深度减小,并更容易发生脆性去除。定载荷刻划时,减小划痕间距,材料的脆性断裂程度增加,导致第二次刻划时的划痕深度和残余深度曲线波动增大,但是弹性回复率没有发生改变。这些现象产生的主要原因是双次刻划会使划痕附近材料的最大主应力迅速增加,并且最大主应力随划痕间距的减小而增大,这将导致裂纹扩展并相互作用,最终造成材料发生严重的脆性断裂。  相似文献   

13.
利用纳米压痕仪研究Ti-24Nb-4Zr-8Sn (Ti2448)合金不同取向单晶体的硬度和弹性模量.结果表明:Ti2448合金单晶表现出各向异性,不同晶面的压入模量和纳米压痕硬度值不同,(001)、(011)和(111)晶面的压入模量分别为68.1、69.1和78.9 GPa,纳米压痕硬度分别为3.5、3.5和3.0 GPa;不同晶面压入模量和纳米压痕硬度的相对大小规律与常规方法测量结果一致,但无法相互换算.  相似文献   

14.
基于原子力显微镜(AFM)和扫描电子显微镜(SEM)建立了一套原位纳米压痕测试系统。该系统可以实现控制带有金刚石(Cube corner)压头的AFM微悬臂梁对样品进行压入实验,并得到载荷-位移曲线,同时可以对压痕过程进行原位SEM实时观察。发展了一种基于AFM微悬臂梁加载和原位SEM压痕图像分析的力学性能测试方法,通过测量压入最大载荷和原位SEM测量压痕残余面积得到塑性薄膜的硬度和弹性模量。利用此方法对磁控溅射硅衬底上纳米晶银薄膜进行了压痕实验,并与Nanoindenter G200型纳米压痕仪实验进行对比研究。结果表明,原位AFM压痕方法具有高的载荷和位移分辨率,可以实现纳牛至微牛级的压痕实验,通过测量压痕面积得到塑性薄膜的硬度值,减小了使用Oliver-pharr方法中软膜硬基底上凸起(Pile-up)效应的影响,计算结果也具有好的测试精度和可靠性。  相似文献   

15.
为了研究动态冲击后颗粒增强镁基复合材料的力学行为,采用分离式霍普金森压杆(SHPB)对试样进行不同速度下的动态冲击实验,采用纳米压痕技术测得冲击后材料在不同压入深度和不同应变率情况下弹性模量、硬度和载荷等随位移的变化趋势,并分析了冲击速度对材料硬度和加载曲线的影响。结果表明:动态冲击后颗粒增强镁基复合材料的弹性模量、硬度随位移增大趋于稳定;载荷随压头压入位移的增大而增大,与位移呈非线性关系,极限载荷随着应变率的增加而增大;应变率对接触刚度几乎没有影响。  相似文献   

16.
本文通过二维准连续介质法模拟三角型压头在纳米压痕试验中测量铝薄膜材料断裂韧度的过程,得到了相应的载荷-位移曲线,计算出了铝薄膜在纳米尺度下的断裂韧度(KIC)和相关的力学性能参数.数值结果显示:单晶铝薄膜材料在纳米尺度下的断裂韧度(KIC)为0.216MPa.m1/2,预测值与相关试验结果较吻合,从而表明使用准连续介质法预测纳米尺度下薄膜材料的断裂韧度是可行的.在研究中发现:对应于载荷-位移曲线的急剧下降区域,相应的位移云纹图中有明显的压痕变形集中现象,表明此处是径向裂纹发生的准确位置.计算结果证明,这种载荷-位移曲线和位移云纹图相结合的方法是计算薄膜材料径向裂纹的有效方法.  相似文献   

17.
为了研究晶体取向对镍基单晶高温合金纳米压痕行为的影响,采用带原子力显微镜的Berkovich压头对[001], [011]和[111]取向的镍基单晶高温合金开展了纳米压痕试验。试验结果显示晶体取向对压痕载荷-深度曲线、硬度和弹性模量有显著影响。晶体取向会影响γ^"强化相形状和体积分数,进而会影响其力学性能。采用晶体塑性理论对三种典型晶体取向下的纳米压痕响应和分解切应力分布开展有限元模拟,模拟结果与试验结果符合得较好。  相似文献   

18.
对铜 / 石墨烯塑性变形行为与强化性能分析对膜-基界面耦合提升金属材料使役性能起促进作用,也为纳米铜强韧机制理解提供有益参鉴价值。基于纳米压痕法对石墨烯膜-单晶铜基底的接触特性展开全原子模拟。分析基底表面有无石墨烯、覆石墨烯层数、基底晶面不同的塑性变形行为与力学强化性能,探讨石墨烯边界效应的褶皱对界面接触质量与强化性能的影响。研究表明:对铜 / 石墨烯而言,纳米压痕时的载荷与位移曲线保持线性关系,主要源于石墨烯面内弹性变形呈均匀化; 相比纯铜,铜表面覆石墨烯的承载性更高,其弹性模量与硬度随覆石墨烯层数增加而线性增大。结果指出:铜表面覆三层石墨烯的硬度与弹性模量比纯铜提高约 7.4 倍,其强化效应源自石墨烯受载产生的面内均匀弹性变形与压头?膜基界面接触质量的协同作用;石墨烯褶皱处的应力集中易诱驱铜上表面产生类褶皱波纹的塑性变形痕迹。相比双边界固定的石墨烯而言,单边界固定的石墨烯褶皱变形更大,界面接触质量有所增加,而强化效果相比却降低 28%。当覆石墨烯层数相同时, 不同晶面铜 / 石墨烯的力学性能和膜?基界面塑性变形有着显著各向异性特征。研究结果对微机电系统金属器件力学性能提升有重要作用。  相似文献   

19.
纳米压痕法测量Cu的室温蠕变速率敏感指数   总被引:7,自引:1,他引:6  
陈吉  汪伟  卢磊  卢柯 《金属学报》2001,37(11):1179-1183
介绍一种测量室温蠕变速率敏感指数m的新方法。即通过纳米压痕仪精确测量压头的压入位移h和材料的硬度值来计算m值。用该法分别测得单晶Cu(123)压痕蠕变的m的平均值约为0.0045;多晶Cu和纳米晶Cu(晶粒尺寸为30nm)的m的平均值分别为0.007和0.0094。压痕蠕变曲线与传统的单轴蠕变曲线十分相似;室温m的平均值与加载条件无关,而由材料的微观结构决定。  相似文献   

20.
利用纳米压痕加载曲线计算硬度-压入深度关系及弹性模量   总被引:10,自引:0,他引:10  
谭孟曦 《金属学报》2005,41(10):1020-1024
通过对纳米压痕法基本原理的分析与实验研究,证明了一般材料的接触刚度-位移(压入深度)为线性关系.该关系可从两个不同压入深度的压痕实验得到,利用该关系可从任意一条加载曲线计算出材料的硬度-位移关系及弹性模量值.实验结果表明这个计算结果是可靠的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号