首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用微机控制固定间隙超声波辅助汽车零部件焊接中Cu/Al异质金属的钎焊工艺,在钎焊温度为380、420和460℃时制备Cu/Zn-3Al/Al钎焊接头,观察了不同温度超声钎焊时接头的显微组织与力学性能变化。结果表明,当钎焊温度为380℃时,钎缝层由Zn-Al共晶、α-Al树枝状晶和CuZn5相组成;当钎焊温度为420和460℃时,发现钎缝层由α-Al树枝晶、CuZn5相和Al4.2Cu3.2Zn0.7相组成;在钎焊温度为420℃时,金属间化合物层厚度为1.9μm,扩散层厚度为1.3μm,整个界面层厚度为3种钎焊温度下的最低值,此时钎焊接头的抗拉强度最大。  相似文献   

2.
采用Zn-14Al过共晶焊料并借助超声波振动对Al/Cu异质金属进行了无钎剂钎焊连接,研究了在420℃超声钎焊不同时间时接头显微结构及力学性能的影响。研究结果表明,随着超声振动时间的延长,钎缝层中的α-Al相减小,Zn-Al共晶相和CuZn_5相增多,Cu界面反应层由以CuZn_5相为主逐步转变为Al_(4.2)Cu_(3.2)Zn_(0.7)相。接头的剪切强度随钎焊时间的延长呈现先增加后减小趋势,钎焊时间为8 s时接头获得了最佳的剪切强度82.6 MPa。  相似文献   

3.
《塑性工程学报》2020,(2):60-67
针对Cu/Al管连接,提出磁脉冲-半固态复合辅助钎焊新工艺。基于LS-DYNA对钎焊过程进行多物理场仿真分析,研究不同电压下半固态钎料流变规律及管壁受力情况。采用Zn-15Al钎料进行钎焊试验,考察了接头的力学性能及显微组织。结果表明:当二次放电电压为7 k V时,钎料与母材实现了良好的冶金结合,接头铝侧区域形成α-Al和金属间化合物CuZn_5,钎料层则出现α-Al、富锌相以及CuZn_5,铜侧区域形成大约4μm的扩散层、锯齿状三元相Al_(4.2)Cu_(3.2)Zn_0. 7以及α-Al和花状CuZn_5。拉伸测试结果表明接头强度高于Al母材,磁脉冲-半固态复合辅助钎焊新工艺能实现Cu/Al管的有效连接。  相似文献   

4.
采用固定间隙超声波辅助钎焊工艺制备了Zn-14Al过共晶钎料钎焊Cu/Al异质金属接头,研究了在不同钎焊温度和钎焊时间时Cu/Al钎焊接头显微组织的演变规律。研究结果表明:无钎剂超声波辅助钎焊接头冶金结合良好,钎焊温度至410℃时,铜界面润湿良好,产生不连续CuZn_5层;随着温度进一步升高,界面层连续化,并逐步向Al_(4.2)Cu_(3.2)Zn_(0.7)相转变;440℃时,Cu界面层完全转变为Al_(4.2)Cu_(3.2)Zn_(0.7)相;同时发现随着钎焊时间的延长,界面CuZn_5相也会向Al_(4.2)Cu_(3.2)Zn_(0.7)相转变。  相似文献   

5.
为研究钎焊温度对TC4/Ti60接头组织及力学性能的影响,采用纯铜箔作为中间层对TC4与Ti60合金进行接触反应钎焊,钎焊温度范围为970~1 010℃.采用SEM,EDS,XRD,拉剪试验对接头组织及力学性能进行研究.结果表明,接头的典型界面组织为TC4/α-Ti+Ti_2Cu/Ti_2Cu/Ti Cu/Ti_2Cu/α-Ti+Ti_2Cu/Ti60.随着钎焊温度的升高,基体侧的反应扩散层厚度增加,钎缝厚度及Ti-Cu金属间化合物含量逐渐减少,钎缝成分趋于均匀化.接头抗剪度随钎焊温度的升高先增加后减少,当钎焊工艺为1 000℃保温10 min时,接头抗剪强度最高为130 MPa.断口分析表明,接头断裂于钎缝与扩散反应层之间,断裂方式为准解理断裂.  相似文献   

6.
王玲  肖勇  万超  符永高 《焊接学报》2017,38(12):90-94
采用固定间隙超声波辅助无钎剂钎焊方法制备了Al/Zn-3Al/Al钎焊接头,并研究了超声振动时间、超声振动功率以及钎焊温度对接头焊合率和显微组织的影响. 结果表明,液相钎料与母材间的冶金结合首先发生在接头的边角处,随着超声振动时间的延长或功率的增加,冶金结合区域逐步向接头的中心蔓延;当超声振动功率高于210 W,超声振动时间长于2 s时,接头能获得优良的焊合率;接头的钎缝层主要由Zn-Al共晶相和α-Al相组成,升高钎焊温度或延长超声振动时间均会增加钎缝层中α-Al相的含量,其机制主要归因于超声空化效应对母材的溶蚀作用.  相似文献   

7.
分别采用Zn-15Al,Zn-22Al,Zn-28Al,Zn-37Al和Zn-45Al钎料钎焊获得Cu/Al接头.利用SEM,EDS和XRD研究了Zn-Al钎料成分对Cu/Al接头中Cu母材/钎缝界面结构的影响,并系统阐述了Zn-Al钎料成分-接头界面结构-接头抗剪切强度之间的关系.研究发现,Cu/Zn-15Al/Al接头中Cu母材/钎缝界面结构为Cu/Al4.2Cu3.2Zn0.7,且Al4.2Cu3.2Zn0.7界面层较薄,其厚度为2~3μm,接头具有较高的抗剪切强度,达66.3 MPa.随着钎料中Al含量的提高,在Cu/Zn-22Al/Al接头界面处Al4.2Cu3.2Zn0.7界面层的厚度逐渐增大,甚至在Cu/Zn-28Al/Al接头的Al4.2Cu3.2Zn0.7界面层附近出现少量的Cu Al2,接头的抗剪切强度逐渐降低.当采用Al含量较高的Zn-37Al钎料钎焊Cu/Al接头时,Cu母材/钎缝界面结构转变为Cu/Al4.2Cu3.2Zn0.7/Cu Al2;脆性Cu Al2层的出现,使接头抗剪切强度大幅下降,为34.5 MPa.当采用Al含量最高的Zn-45Al钎料钎焊Cu/Al接头时,Cu母材/钎缝界面结构转变为Cu/Cu Al2,接头抗剪切强度最低,为31.6 MPa.  相似文献   

8.
高纯氧化铝与金属钛的钎焊   总被引:1,自引:1,他引:0       下载免费PDF全文
电真空应用中,要求高纯氧化铝与金属钛的连接接头不仅要有较好的强度,还要有高的气密性.用Ag-Cu-Ti钎料钎焊高纯氧化铝陶瓷与金属钛,钎焊温度为825~875℃,保温时间为15~20min,陶瓷表面为烧结自然表面时,钎焊接头抗剪强度可达到100MPa以上,连接温度过低或过高,保温时间过短或过长均对接头强度不利.陶瓷表面研磨后,接头强度降低.钎料厚度在60μm或105μm对接头强度的影响不大.接头由Al2O3/反应层(Cu,Al,Ti,0)/Ag Cu-Ti化合物/α-Ti(Cu)/Ti构成.反应层主要以Cu3Ti3O和Cu4Ti为主.  相似文献   

9.
采用Al-Zn-Si-Cu-Sn系钎料在不同温度下进行铜/铝炉中钎焊试验,测试了不同温度下表面质量及气密性,并通过金相观察及EDS扫描试验分析了试样钎缝中心区显微组织。试验结果表明,较理想的钎焊温度在560~580℃,在此温度区间2组试样表面质量良好,且高、低压环境下气密性良好,铜侧与钎料界面处金属化合物主要是Cu Al2,且化合物层较薄,为6~7μm和4~5μm,钎缝中心区为α-Al固溶体和Al-Zn共晶组织,未发现金属间化合物,铝侧与钎料出现熔合现象;低于此区间时,钎料出现未充分熔化和聚堆现象,表面质量差;高于此区间时,由于温度过高母材产生溶蚀现象。从化合物层厚薄程度来看,570℃更适合该钎料铜/铝炉中钎焊。  相似文献   

10.
采用Ti-25.65Zr-13.3Cu-12.35Ni-3Co-2Mo(wt.%)非晶箔带钎料在900 ℃~1020 ℃/10 min工艺下真空钎焊连接TC4和TNM合金,并系统研究了TC4/TNM钎焊接头的界面组织和形成机理以及钎焊温度对界面组织和剪切强度的影响规律。结果表明:钎焊温度900~980 ℃时接头的组织为TC4/细小网篮状(α+β)-Ti/γ-(Ti,Zr)2(Cu,Ni) + α-Ti/Ti3Al/TNM,随钎焊温度升高,钎缝中硬脆的γ相减少、韧性的α-Ti增加。钎焊温度1000 ℃和1020 ℃时,接头的界面反应层由三层演变成两层且对应的物相分别是韧性差的粗针状(α+β)-Ti和Ti3Al,粗针状(α+β)-Ti随温度升高进一步粗化。钎焊接头剪切强度随温度升高先增加后减小,钎焊温度980 ℃时剪切强度达到最大值494.83 MPa。剪切测试的钎焊接头均脆性断裂于TNM侧的钎缝中。  相似文献   

11.
采用Al-Si钎料对经过Ag-Cu-Ti粉末活性金属化处理的Al2O3陶瓷与5005铝合金进行了真空钎焊,研究了钎焊接头的典型界面组织,分析了钎焊温度对接头界面结构特征及力学性能的影响. 结果表明,接头典型界面结构为5005铝合金/α-Al+θ-Al2Cu+ξ-Ag2Al/ξ-Ag2Al+θ-Al2Cu+Al3Ti/Ti3Cu3O/Al2O3陶瓷. 钎焊过程中,Al-Si钎料与活性元素Ti及铝合金母材发生冶金反应,实现对两侧母材的连接. 随着钎焊温度的升高,陶瓷侧Ti3Cu3O活化反应层的厚度逐渐变薄,溶解进钎缝中的Ag和Cu与Al反应加剧,生成ξ-Ag2Al+θ-Al2Cu金属间化合物的数量增多,铝合金的晶间渗入明显;随钎焊温度的升高,接头抗剪强度先增加后降低,当钎焊温度为610 ℃时,接头强度最高达到15 MPa.  相似文献   

12.
通过向Ag Cu共晶钎料中添加nano-Al2O3增强相(2%,质量分数)并采用高能球磨的方法获得了Ag Cu+nano-Al2O3复合钎料(Ag Cu C钎料)。采用Ag Cu C钎料实现了TC4合金与Al2O3陶瓷的高质量钎焊连接,确定了TC4/Ag Cu C/Al2O3钎焊接头的典型界面组织结构为:TC4/α-Ti+Ti2Cu扩散层/Ti3Cu4层/Ag(s,s)+Ti3Cu4+Ti Cu/Ti3Cu4层/Ti3(Cu,Al)3O层/Al2O3。Nano-Al2O3的添加抑制了钎缝中连续的Ti-Cu化合物层的生长,同时在钎缝中形成了颗粒状Ti-Cu化合物相增强的Ag基复合材料,改善了钎焊接头的界面组织。随着钎焊温度的升高,各反应层厚度逐渐增加,颗粒状Ti-Cu化合物不断长大,Ag基复合材料组织逐渐细小。当钎焊温度T=920℃,保温时间t=10 min时接头抗剪强度达到最大为67.8 MPa,典型断口分析表明:压剪过程中,裂纹起源于钎角处并沿钎缝扩展后转入Al2O3陶瓷,最终在Al2O3陶瓷母材侧发生断裂。  相似文献   

13.
采用热压烧结法制备了Al-12Si自钎剂钎料,对不同烧结温度下钎料的钎焊接头力学性能和显微组织进行了研究.结果表明:在烧结温度为460℃时,自钎剂钎料钎焊3003母材的接头抗拉强度达到最大值67 MPa;自钎剂钎料钎焊接头截面上的显微硬度分布不均匀,且钎缝的整体显微硬度高于两侧母材的显微硬度;烧结温度大于440℃的钎料的钎焊接头均匀饱满,钎料扩散较为充分,钎缝中心处主要是由α-Al固溶体和树枝状、针状Si相组成.  相似文献   

14.
Ag-Cu钎料钎焊ZTA陶瓷与TC4钛合金   总被引:1,自引:1,他引:0       下载免费PDF全文
使用Ag-Cu钎料钎焊ZTA陶瓷与TC4钛合金,利用扫描电子显微镜(SEM)、能谱分析仪(EDS)和X射线衍射仪(XRD)等设备分析了钎焊接头界面组织,阐明了反应机理,并研究了钎焊温度对接头界面组织和力学性能的影响. 结果表明,钎焊接头的界面结构为ZTA陶瓷/TiO+Ti3(Cu,Al)3O/Ag(s,s)/Ti2Cu3/TiCu/Ti2Cu/α+β-Ti/TC4合金. 随着钎焊温度的升高,钎缝中Ag基固溶体层变薄,Ti-Cu金属间化合物层变厚,当钎焊温度达到890 ℃时,Ti-Cu金属间化合物几乎占据整了个钎缝区域. 随着温度的升高,接头抗剪强度先增大后减小,在钎焊温度为890 ℃时,接头的室温抗剪强度达到最大值,其值为43.2 MPa.  相似文献   

15.
TiAl基合金与Ni基合金钎焊连接接头界面组织及性能   总被引:1,自引:0,他引:1  
采用BNi2钎料实现了TiAl基合金与Ni基高温合金的钎焊。采用扫描电镜、能谱分析和X射线衍射等手段对钎焊接头的界面组织结构及生成相进行分析,并对接头的抗剪强度进行测试。结果表明,钎焊接头的典型界面结构为:GH99/(Ni)ss (γ)+Ni3B+CrB+富Ti-硼化物/TiNi2Al/TiNiAl+Ti3Al/TiAl;随着钎焊温度的升高或保温时间的延长,较多的B和Si元素扩散进入两侧母材,导致钎缝中硼化物数量减少,而TiAl/钎缝界面的TiNi2Al和TiNiAl+Ti3Al金属间化合物层厚度增加;当钎焊温度为1050 ℃,保温时间为5 min时,接头的抗剪强度达到最大为205 MPa,接头主要断裂于TiNiAl金属间化合物层。当钎焊温度升高或保温时间继续延长时,TiNiAl厚度显著增加,导致接头强度下降  相似文献   

16.
采用电镀工艺在Zn-27Al钎料表面镀Ni制备出复合锌基钎料,在氮气的环境中采用电阻炉用复合锌基钎料和Zn-27Al钎料对Cu与Al进行钎焊试验,运用金相显微镜、电子探针、X射线衍射仪分析接头微观组织,通过拉伸试验评定焊接接头力学性能。结果表明:复合钎料钎缝中Al_2Cu_3偏聚在Cu侧、α-Al固溶体偏聚在Al侧的现象消失,组织分布更加均匀、且有新的CuZn_5+Ni_3Al复合相生成;Ni层能够有效地阻止Al和Cu的扩散,从而降低低熔点脆性化合物Al_2Cu的生成。同一钎焊条件下,复合锌基钎料钎焊接头的抗拉强度高于普通钎料,分别达到23. 79 MPa和31. 73 MPa。  相似文献   

17.
以Ti为中间层实现了TiAl与Ni基合金的接触反应钎焊。采用扫描电镜和电子探针等手段对钎焊接头的界面结构及生成相进行分析,并对接头剪切强度进行测试。结果表明:当钎焊温度为960℃时,钎缝主要由Tiss和Ti2Ni组成;当钎焊温度从960℃升高到1000℃时,钎缝中生成Ti-Al及Al-Ni-Ti化合物,典型界面结构为:GH99/(Ni,Cr)ss/Ti2Ni+AlNi2Ti+TiNi/Ti3Al+Al3NiTi2/Ti3Al+Al3NiTi2/TiAl;钎焊温度继续升高,Ti3Al和Al3NiTi2变得粗大,导致接头性能下降。当钎焊温度为1000℃,保温10min时,接头剪切强度达到最大值233MPa。随钎焊温度的升高,钎缝厚度先增加后减小。  相似文献   

18.
采用Zn98Al和Zn72.5Al两种Zn-Al药芯钎料对SiCP/Al复合材料进行氩气保护钎焊试验,研究了钎焊温度和保温时间对接头剪切强度及显微组织的影响。结果表明,用这两种钎料在氩气保护炉中钎焊SiCP/Al复合材料,可以获得质量良好的钎焊接头。对Zn98Al钎料,当温度为490℃、保温45min时可获得剪切强度为71.01MPa的钎焊接头;而Zn72.5Al钎料,在温度为560℃、保温11 min时可获得剪切强度为63.71MPa的钎焊接头。两种钎料的钎焊接头显微硬度均略低于母材。两种接头钎缝区的XRD相结构分析发现,钎缝中都只存在α(Al)和β(Zn)两相;接头断口扫描观察显示,接头整体呈韧性断裂特征。  相似文献   

19.
首次采用Al-5.6Si-25.2Ge钎料对Cu/Al异种金属进行了炉中钎焊,分别从钎料的熔化特性、铺展润湿性、Cu侧界面组织以及钎焊接头强度等方面进行了系统研究,并与Zn-22Al钎料钎焊结果进行对比。结果表明,Al-5.6Si-25.2Ge钎料具有较低的熔化温度(约541℃),同时在Cu、Al母材上均具有良好的铺展润湿性。Al-5.6Si-25.2Ge/Cu界面由CuAl_2/CuAl/Cu_3Al_2三层化合物组成,其中CuAl和Cu_3Al_2呈层状,厚度较薄,仅为1~2 mm;CuAl_2呈胞状,平均厚度约为3 mm。Zn-22Al/Cu界面结构为CuAl_2/CuAl/Cu_9Al_4,其中CuAl_2层平均厚度高达15 mm。接头抗剪切强度测试结果表明,Zn-22Al钎料钎焊Cu/Al接头抗剪切强度仅为42.7 MPa,而Al-5.6Si-25.2Ge钎料钎焊Cu/Al接头具有更高的抗剪切强度,为53.4 MPa。  相似文献   

20.
采用Al5Si28Cu2.5Ti钎料,在真空钎焊炉中钎焊Si CP为55%的Si CP/Al6063铝基复合材料,钎焊温度580℃,研究了钎焊时间对接头组织性能的影响.结果表明,钎焊时间20 min时钎缝存在大量的共晶组织,界面结合强度低,钎焊时间60 min时共晶组织消失,钎缝中有网状脆性相析出,碳化物有偏聚现象,界面有微裂纹,接头性能不好,钎焊时间40 min接头的组织性能最好,抗剪强度为96 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号