首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TC11钛合金热变形本构方程的建立   总被引:1,自引:0,他引:1  
利用Gleeble-1500D热模拟试验机,在变形温度为960~1050℃,应变速率为0.01~10s-1范围内对TC11钛合金进行等温恒应变速率压缩实验。通过真应力-真应变曲线,分析了变形温度和应变速率对流变应力的影响规律,并在Arrhenius双曲正弦型方程的基础上建立了适用于TC11钛合金热变形的本构方程。误差分析表明所建立的本构方程与实验值吻合较好,为制定TC11钛合金锻造工艺提供了理论依据。  相似文献   

2.
在Gleeble-3500热模拟试验机上进行等温热压缩试验,得到TA11钛合金在温度为954~1074℃、应变速率为0.05~5 s~(-1)、变形量为60%条件下的真应力-真应变曲线。根据真应力-真应变曲线,分析流变应力随变形温度、应变速率和应变的变化规律。结果表明,流变应力与变形速率成正比,与变形温度成反比;利用Arrhenius双曲正弦方程和Z参数建立了TA11钛合金的热变形本构方程。经验证明,试验值与所建立的本构方程的预测值吻合较好,可用于预测TA11钛合金塑性变形过程中的变形抗力和作为有限元数值模拟的材料模型。  相似文献   

3.
《塑性工程学报》2016,(2):120-125
利用Gleeble-3800热模拟试验机进行热压缩实验,研究了TC4-DT钛合金在温度1163K~1293K、应变速率为0.005s~(-1)~0.5s~(-1)、变形量为60%条件下的热变形行为。根据应力-应变曲线分析该合金的流变应力变化特点,建立该合金的Arrhenius双曲正弦型本构方程。结果表明,所建立的本构方程与实验值吻合程度较高,为制定TC4-DT钛合金热加工工艺规范提供理论依据。  相似文献   

4.
TB6钛合金热变形行为及本构模型研究   总被引:1,自引:0,他引:1  
研究材料的热变形行为及建立其本构模型是进行材料加工与模拟的基础。通过对TB6钛合金热变形行为分析,表明流变应力受应变速率的影响较显著,而变形温度对流变应力的影响程度与应变速率的大小有关。采用Arrhenius型双曲正弦方程建立了TB6钛合金流变应力本构模型。研究变形条件对TB6钛合金流变应力的影响。结果表明,可通过控制应变速率和变形激活能来控制热加工的应力水平和力能参数,为TB6钛合金塑性加工过程控制和模拟提供前提条件。  相似文献   

5.
Zener-Hollomon参数将金属材料本构方程中变量简化为应力、应变和Z参数,极大简化了材料本构方程的数学模型。结果表明,采用等温恒应变速率热压缩实验得到了TC18钛合金流变应力曲线,应用非线性拟合方法计算得到了基于Z参数的峰值应力σ_p以及峰值应变ε_p函数模型,应用多元非线性拟合方法计算了基于Z参数、峰值应力σ_p以及峰值应变ε_p的TC18钛合金本构模型。  相似文献   

6.
铸态TB6钛合金热变形行为及本构关系   总被引:1,自引:0,他引:1  
通过等温恒应变速率压缩实验研究铸态TB6钛合金在温度为800~1 100 ℃,应变速率为10-3~1 s-1条件下的热变形行为.结果表明:应变速率对铸态TB6合金流变应力的影响最显著,其次是变形温度,而应变的影响作用最小.在低温高应变速率下,流变应力曲线呈连续软化特征,而在高温低应变速率下,流变应力曲线呈稳态流变特征.铸态TB6合金的热变形激活能为200 kJ/mol,接近纯钛β相的自扩散激活能,表明在实验条件范围内主要发生动态回复过程.在Arrhenius方程基础上考虑了应变对流变应力曲线的影响,建立了能准确描述铸态TB6钛合金流变应力曲线的双曲正弦本构关系.  相似文献   

7.
使用Gleeble-3500热模拟试验机在变形温度为800~1000℃、应变速率0.001~10 s~(-1)以及真应变为1.2的条件下对TB17钛合金进行热变形行为研究。根据热压缩数据,分析真应力-真应变曲线,计算TB17钛合金变形激活能,并建立了TB17钛合金应力-应变本构模型,对金相组织进行分析,并进行了本构模型的验证。结果表明,TB17钛合金在热压缩变形过程中,出现动态回复和动态再结晶现象,在低应变速率0.001和0.01 s~(-1)下,以动态再结晶为主要软化机制,在高应变速率1和10 s~(-1)下主要以动态回复为软化机制;流变应力随应变速率的下降和变形温度的升高而降低;峰值应力计算值和实验值的平均误差为6.5%,表明该模型有很高的精确度。研究为TB17钛合金塑性加工过程的模拟和控制提供了参考。  相似文献   

8.
在电子万能拉伸试验机上对TB8钛合金进行了恒应变速率超塑性拉伸试验(变形温度为720~880℃,应变速率为0.000 1~0.01s~(-1)),研究了拉伸流变行为,计算了超塑性拉伸变形激活能和相应的应力指数,建立了TB8钛合金应力-应变本构模型。结果表明,在同一应变速率下,流变应力随变形温度的增加而减少,同一变形温度下,流变应力随应变速率的增加而增加。在变形温度为840℃,应变速率为10~(-4) s~(-1),合金的伸长率最大,为356%;超塑性拉伸变形激活能和应力指数分别为251.25kJ/mol、2.389 5。  相似文献   

9.
采用Gleeble-3800热模拟试验机对TA15钛合金进行了热压缩,获得了TA15钛合金在750~980℃、应变速率在0.001~1 s~(-1)的应力-应变曲线。基于TA15钛合金的压缩试验数据建立了高温热变形本构方程和热加工图,并结合热加工图分析了TA15钛合金热变形组织,确定了TA15钛合金的合理热加工参数范围。结果表明,TA15钛合金本构方程为双曲正弦函数,可由Z参数表示,其热变形激活能为523.374 k J/mol。TA15钛合金高温热变形最佳工艺参数为变形温度875~980℃和应变速率0.01~0.10 s~(-1)。  相似文献   

10.
《塑性工程学报》2016,(5):139-143
在500℃下,对经800℃、30min空冷固溶处理后的TB2钛合金板带材试样进行了0.3σ_(0.2)~(500℃)、0.4σ_(0.2)~(500℃)和0.5σ_(0.2)~(500℃)3种应力水平下的多组单轴拉伸蠕变试验;基于经典蠕变本构方程和Garofalo蠕变本构方程,建立了TB2钛合金在500℃及不同应力水平下的新蠕变本构方程;利用Origin软件拟合蠕变试验数据,分别得到3个蠕变本构方程中的参数值;蠕变试验数据点与拟合曲线的比较说明,所得的新蠕变本构方程可很好地描述TB2钛合金在500℃及不同应力条件下的蠕变行为。  相似文献   

11.
采用Geeble- 1500热模拟实验机测试了高强耐热Mg-6Gd-3Y-0.5Zr合金在变形温度为300~500℃、应变速率为10-3~1 s-1下的流变力学行为,采用扫描电子显微镜对其微观组织进行观察,分析了幂函数(PI)、指数函数(EI)和双曲正弦函数(SI)半经验本构方程对该合金变形行为拟合的适用性.结果表明:EI拟合实验结果精度大于PI和SI的,即使对SI函数中材料常数α进行一定优化处理得到SIO函数的拟合精度,也与EI函数十分接近.合金中高温耐热相提高合金高温下的强度是EI拟合优于PI和SI的原因.  相似文献   

12.
通过在G1eeble-3800模拟机上热压缩试验研究了TB9钛合金在变形温度850~1050℃、应变速率0.01~10s~(-1)、变形程度70%的条件下的热变形行为。基于试验数据及Prasad判据建立了真应力-真应变曲线和加工图,通过其研究了该合金的高温变形行为、变形失稳现象和变形机制。结果表明:TB9钛合金的流变应力与变形速率成正比,与变形温度成反比:在试验条件下合金发生不连续屈服现象;功率耗散率较高的区域发生了不连续动态再结晶;流动失稳区为:850~1050℃和0.5~10s~(-1),850~950℃和0.08~0.5s~(-1),失稳现象表现为不均匀变形;适合加工的区域是1000~1050℃和0.01~0.1 s~(-1)围成的区域。  相似文献   

13.
钛合金型材作为力学性能良好的轻质材料,被广泛应用于飞行器框梁等骨架零件中,其成形质量直接关系到飞机的装配精度、整机气动外形和使用寿命。为探究TC4钛合金L型材的热拉伸变形行为及本构关系,在不同的温度(600~800℃)和初始应变速率(0.00033~0.0083 s~(-1))下进行了多组单轴热拉伸试验,根据应力-应变曲线特点分析了型材热拉伸变形行为,并通过采用回归处理和参数优化的方法建立其复合型唯象本构方程,该模型预测应力和实测应力的最小相关性系数R和最大平均相对误差绝对值AARE分别为0.9641和7.5%,即建立的本构模型能够高精度表征TC4钛合金L型材的热拉伸变形行为,可作为其热变形有限元模拟的准确材料模型。  相似文献   

14.
采用Gleeble-3500热模拟试验机进行等温热压缩实验,分析了GH2907合金在变形温度950℃~1100℃、应变速率0.01s<sub>-1</sub>~10s<sub>-1</sub>、变形量60%条件下的高温流变行为。结果表明:合金的流变应力随着变形温度的升高或应变速率的降低而显著降低。利用Arrhenius双曲正弦方程和Zener-Hollomon参数计算得出合金的热变形激活能Q为463.043kJ.mol<sub>-1</sub>;合金的应力-应变曲线具有明显的动态再结晶(DRX)特征,变形量、变形温度以及应变速率对DRX体积分数均具有显著影响。基于应力-位错关系和DRX动力学,建立了加工硬化-动态回复和动态再结晶两个阶段的机理型本构模型,可用于描述流变应力与应变速率和变形温度之间的关系。误差分析相关系数R为0.987,预测值与实验值吻合良好,可用于表征预测GH2907合金的热变形行为。  相似文献   

15.
AZ31镁合金热变形本构方程   总被引:4,自引:1,他引:4  
在温度为250-350℃、应变速率为0.01~1.0/s、最大变形程度为50%条件下对AZ31镁合金的高温流动应力变化规律进行热模拟实验研究.对双曲正弦模型的Arrhenins本构方程进行简化,与原模型相比,简化后的计算模型的计算结果相对误差小于4.2%.根据热模拟实验数据,确定AZ31镁合金高温变形本构关系模型,该本构关系模型的相对计算误差小于13%.实验确定的AZ31镁合金本构关系模型的适用温度范围为250~350℃,应变速率范围为0.01~1.0/s.  相似文献   

16.
在Gleeble-3800热模拟机上对锻态β-CEZ钛合金在变形温度800~1000℃、应变速率0.01~10 s-1、变形程度70%的参数下进行了热模拟试验。根据真应力—真应变曲线研究了变形温度和应变速率对应力的影响,利用Arrhenius双曲正弦方程和Z参数建立了β-CEZ钛合金热变形本构方程。结果表明:β-CEZ钛合金的流变应力与变形速率成正比,与变形温度成反比;在试验条件下β-CEZ钛合金表现出动态回复和动态再结晶两种软化机制。误差分析表明,建立的热变形本构方程与试验值基本一致,能为β-CEZ钛合金有限元模拟及变形工艺选取提供理论依据。  相似文献   

17.
在变形温度600℃800℃、应变速率0.01s-1800℃、应变速率0.01s-10.33s-1条件下进行热态单向拉伸试验,研究Ti-6Al-4V钛合金的变形行为,以及变形性能与变形温度、应变速率之间的关系。结果表明,Ti-6Al-4V钛合金在变形过程中呈现两种变形特征,即稳态形与软化形,且随着变形温度的升高、应变速率的降低,流动应力降低,而延伸率则升高;基于Hooke定律和Grosman方程建立的Ti-6Al-4V钛合金热态成形本构方程,在整个变形区间内可以很好的表征材料的变形行为。  相似文献   

18.
利用Gleeble-1500热模拟试验机研究了在变形温度850~1200℃、 应变速率0.01~10 s-1条件下12CrNi9MoV钢的热变形行为.基于试验钢的真应力-真应变曲线,获得了试验钢的热变形激活能为365.3 kJ·mol-1,进而得到了试验钢的热变形本构方程.结果表明:12CrNi9MoV钢为热敏感型和正...  相似文献   

19.
利用Gleeble-1500热模拟机,研究6111铝合金在变形温度为350℃~550℃、应变速率为0.01s-1~10s-1的热变形流变应力行为。研究结果表明,6111铝合金为正应变速率敏感材料,且随着变形温度升高抗拉强度减小,其热变形经历了从应变硬化阶段过渡到稳态变形阶段的过程,软化机制主要为动态回复;采用Zener-Hollomon参数建立6111铝合金的本构方程,该方程可用于模拟6111铝合金材料一般加载情况下的热成形过程。  相似文献   

20.
采用Gleeble-3800热模拟试验机对Mo-Nb单晶材料的高温流变应力变化规律进行了热模拟实验研究,变形温度区间为1100~1300℃,应变速率为0.001~10 s~(-1),变形程度为50%,真应变量为0.7。结果表明,变形温度和变形速率对Mo-Nb单晶材料的流变应力有较大影响,Mo-Nb单晶材料的真应力-真应变曲线表现出峰值、应变软化和稳态流动等特征。采用修正Arrhenius双曲正弦函数建立了Q、A、n、α等材料常数与真应变的函数关系式,计算了在试验条件下的各种材料参数,推导了Mo-Nb单晶材料高温变形本构方程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号