首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用AgCuTi活性钎料实现了Al_2O_3陶瓷与TiAl合金的钎焊连接,研究了钎焊接头的界面结构及其形成机制,并且分析了不同钎焊参数对接头界面组织和接头力学性能的影响规律。结果表明:Al_2O_3陶瓷与TiAl合金钎焊接头的典型界面组织为:Al_2O_3/Ti_3(Cu,Al)_3O/Ag(s.s)+Cu(s.s)+AlCu_2Ti/AlCu_2Ti+AlCuTi/TiAl。钎焊过程中,TiAl基体向液态钎料中的溶解量决定了钎焊接头界面组织的形成及其演化。随着钎焊温度的升高和保温时间的延长,Al_2O_3陶瓷侧的Ti_3(Cu,Al)_3O反应层增厚,钎缝中弥散分布的团块状AlCu_2Ti化合物逐渐聚集长大。陶瓷侧界面反应层的厚度和钎缝中AlCu_2Ti化合物的形态及分布共同决定着接头的抗剪强度。当钎焊温度为880℃,保温10 min时,接头的抗剪强度最大,达到94 MPa,此时接头的断裂形式呈现沿Al_2O_3陶瓷基体和界面反应层的复合断裂模式。  相似文献   

2.
鲁盛会  秦博  姜玮 《贵金属》2019,40(4):59-63
用BAg72Cu钎料对氧化钇稳定氧化锆(YSZ)陶瓷与Kovar合金进行真空钎焊封接,用SEM、EDS和氦质谱检漏仪考察了钎焊温度和钎焊厚度对钎焊封接件的抗剪强度和气密性的影响,并分析了钎焊界面微观结合情况。结果表明,YSZ陶瓷与Kovar合金在850℃保温5 min钎焊封接时,获得的封接件能够承受最大的抗剪强度为75 MPa;钎缝氦漏率优于6.0×10-11 Pa.m3/s,钎缝无气孔、裂纹现象,钎缝中间区域主要为银基钎料凝固组织,Kovar合金侧界面反应区富集铜合金,铂金属化层侧为富银相。  相似文献   

3.
采用Al-Si-Mg钎料制备了表面Mo-Mn化后镀Ni的Al_2O_3陶瓷与1A95铝合金真空钎焊接头,研究了钎焊温度和保温时间对钎焊接头组织和剪切性能的影响,并分析了接头的界面微观组织及断口形貌。研究表明,最佳钎焊工艺为580℃×20 min,接头的抗剪强度达到74 MPa,此时接头界面结构为Al_2O_3/Mo-Mn/Al_3Ni/α-Al/1A95。随着钎焊温度的升高,界面处Al_3Ni化合物厚度增加;随着保温时间的延长,界面处产生了Al_(12)Mo化合物覆盖在Al_3Ni化合物上方。接头的断裂形式均为脆性断裂:当钎焊温度较低保温时间较短时,断裂主要发生在靠近铝合金与钎料层的界面处。最佳工艺条件下,断裂一部分发生在钎料和镀镍层的反应区内,一部分发生在靠近铝合金与钎料层的界面处。随着钎焊温度或保温时间进一步提高,断裂主要发生在钎料和镀镍层的反应区内。  相似文献   

4.
兼具陶瓷与金属优异性能的复合构件的连接一直是材料的研究热点。本课题采用活性钎料AgCuTi钎焊了Al_2O_3陶瓷和GH99高温合金接头,并分析了接头的界面结构以及界面形成的机理,研究了钎焊温度和保温时间对接头组织结构的影响,得出了以下结论:接头连接完好,钎焊界面中无孔洞、裂纹等缺陷,接头典型界面组织结构为GH99/TiNi_3/Cu(s,s)+Ag(s,s)/Cu_3Ti_3O(Ti(O)_(3x))/Al_2O_3;连接温度升高,钎料与两侧母材的反应作用加剧,GH99侧的TiNi_3反应层增厚,且延伸进钎料中部,而陶瓷侧未观察到明显的反应层,但陶瓷与钎料相互扩散得更充分;随着保温时间的延长,GH99侧TiNi_3反应层的厚度增厚明显,保温时间较长时该反应层中产生微裂纹,而Al_2O_3陶瓷侧的连接则更为致密。  相似文献   

5.
采用Ag Cu Ti钎料实现了Al_2O_3陶瓷与Fe-Co-Ni合金的钎焊连接,并调查了不同钛含量的钎料对Al_2O_3/Ag-Cu-Ti/Fe-Ni-Co钎焊接头机械性能和微观组织结构的影响。利用扫描电镜(SEM),X射线能量谱仪(EDS),X射线衍射仪(XRD)及电子万能试验机研究了钎焊接头的力学性能和微观组织结构。结果表明,钛含量的增加明显提高Ag-Cu-Ti钎料与Al_2O_3陶瓷的相互作用,在Al_2O_3/Ag-Cu-Ti界面生成一层由Ti-Al和Ti-O化合物组成的反应层。Al_2O_3/Ag-Cu-Ti/Fe-Ni-Co钎焊接头的抗拉强度随钛含量的增加而增加,当钛含量提高到8%(质量分数)时,抗拉强度达到最大值78 MPa。通过微观组织结构分析发现,采用AgCu4Ti在890℃保温5 min的条件下可以获得较好的钎焊接头,典型接头的微观组织结构为Al_2O_3/TiAl+Ti_3O_5/NiTi+Cu_3Ti+Ag(s,s)/Ag(s,s)+Cu(s,s)+(Cu,Ni)/Fe-Ni-Co。采用Ag-Cu-8Ti获得的钎焊接头的界面反应层与Ag-Cu-4Ti差异不大,但反应层稍微增厚,并伴有TiO和Ti_3Al在Al_2O_3/Ag-Cu-Ti界面生成。  相似文献   

6.
Al_2O_3陶瓷与可伐合金复合构件在电子封装、航空设备和机械工程等领域均有广阔的应用前景,但因Al_2O_3陶瓷与可伐合金理化性能的差异,焊接界面常存在焊接残余应力大、难以形成良好化学冶金结合等问题。总结Al_2O_3陶瓷与可伐合金采用真空钎焊、部分液相瞬时钎焊和镀膜钎焊的研究进展,阐述Al_2O_3陶瓷与可伐合金同钎料之间界面结合机理,展望Al_2O_3陶瓷与可伐合金钎焊的发展趋势。  相似文献   

7.
采用Cu23Ti钎料合金对Ti(C,N)-Al_2O_3陶瓷基复合材料进行真空钎焊,利用扫描电镜和四点弯曲试验研究了钎焊接头的组织和性能。结果表明:Cu23Ti钎焊接头由Ti(C,N)-Al_2O_3/界面反应层/剩余钎料层构成,界面反应层厚度随钎焊时间的延长而增加,接头在钎焊30 min时获得最大的弯曲强度。  相似文献   

8.
采用Ag-Cu-Ti钎料对Al_2O_3陶瓷与304不锈钢进行了不同工艺参数下的真空钎焊连接试验。通过SEM、EDS、XRD方法分析了钎焊接头的显微组织和界面反应产物,研究了钎焊温度和保温时间对钎焊接头组织和裂纹的影响。结果表明,Al_2O_3/304接头钎缝分为3个反应区,分别是靠近陶瓷的反应层,由Ti O反应层和Ti3Al反应层组成;钎缝区,由Ag(Cu)固溶体、Cu(Ag)固溶体和Ti Fe_2组成;靠近不锈钢的Ti Fe_2+Ti O反应层。随着钎焊温度升高,保温时间的延长,接头钎缝中Ti Fe_2数量增加,尺寸增大,这降低了通过塑性变形缓解接头残余应力的能力,同时陶瓷侧界面反应层增厚。这些使得接头陶瓷的裂纹现象越严重。  相似文献   

9.
采用泡沫Ni增强Sn基复合钎料片,通过超声波辅助钎焊工艺对Al_2O_3陶瓷进行了低温连接,研究了不同钎焊时间对Al_2O_3接头显微结构及抗剪强度的影响。结果表明,钎焊时间从4 s延长至12 s时,Ni骨架从多边形向条状转变,钎缝宽度从90μm减小到30μm,Sn金属逐渐填充到泡沫Ni的空隙中,钎缝中的缺陷逐渐减少至消失。在泡沫Ni骨架表面形成了Ni_3Sn_4金属间化合物层,其厚度随钎焊时间的延长而增大,同时接头的抗剪强度呈现先提高后降低的趋势。钎焊时间为8 s时,接头获得了最佳的抗剪强度值38.6 MPa。  相似文献   

10.
采用Ti-Zr-Ni-Cu钎料对SiC陶瓷进行了真空钎焊,研究了SiC陶瓷真空钎焊接头的界面显微组织和界面形成机理.试验中采用扫描电子显微镜(SEM)对接头组织进行了观察,并进行了局部能谱分析.结果表明,接头界面产物主要有TiC,Ti5Si3,Zr2Si,Zr(s,s),Ti(s,s)+Ti2(Cu,Ni)和(Ti,Zr)(Ni,Cu)等.接头的界面结构可以表示为:SiC/TiC/Ti5Si3+Zr2Si/Zr(s,s)/Ti(s,s)+Ti2(Cu,Ni)/(Ti,Zr)(Ni,Cu).钎焊过程分为五个阶段:钎料与母材的物理接触;钎料熔化和陶瓷侧反应层开始形成;钎料液相向母材扩散、陶瓷侧反应层厚度增加,钎缝中液相成分均匀化;陶瓷侧反应层终止及过共晶组织形成;钎缝中心金属间化合物凝固.在钎焊温度960℃,保温时间10 min时,接头抗剪强度可达110 MPa.  相似文献   

11.
通过在Ag-26Cu-5Ti钎料中添加21. 5%In,设计开发了一种新型Ag Cu In Ti合金钎料,用于实现Al2O3陶瓷与无氧铜的活性连接,同时改善流动性,提高活性。对钎料的固液相温度与润湿铺展性能进行分析,并测试了Al_2O_3/Ag Cu In Ti/Cu试验件抗拉强度和气密性。通过金相显微镜、扫描电子显微镜观察试验件微观界面组织,进一步探究Ag Cu In Ti合金钎料的活性连接反应机理。结果表明,Ag Cu In Ti合金钎料在750℃实现了对陶瓷和金属的真空活性连,降低了钎焊温度,满足分级钎焊和补焊的需求,且形成结合紧密的反应界面,证明其对陶瓷具有良好的润湿性;钎焊过程中合金钎料中的Ti元素向Al_2O_3陶瓷界面富集,形成多个界面产物,而合金钎料中Ag元素、Cu元素、In元素与无氧铜发生溶解扩散,生成新的化合物相,最终实现陶瓷与金属的冶金结合。  相似文献   

12.
高纯氧化铝陶瓷与无氧铜的钎焊   总被引:2,自引:1,他引:1       下载免费PDF全文
电真空应用中,要求高纯氧化铝与无氧铜的连接接头具有较高的强度和气密性.采用Ag-Cu-Ti活性钎料直接钎焊高纯氧化铝陶瓷与无氧铜,研究了钎焊温度和保温时间对接头组成、界面反应以及接头抗剪强度的影响,研究了铜基体材料对钎焊接头组织和界面反应的影响.钎焊温度850~900℃,保温时间20~60 min时,接头抗剪强度接近或达到90 MPa.钎焊工艺参数偏离上述范围时,接头抗剪强度较低.接头由Cu/Ag(Cu),Cu(Ag,Ti)/Cu3Ti3O(TiO2)/Al2O3组成,反应层以Cu3Ti3O为主,个别工艺条件下有一定量的TiO2生成,铜基体视工艺条件的不同对钎焊接头组织有一定影响.  相似文献   

13.
采用Ti-Zr-Ni-Cu钎料对SiC陶瓷进行了真空钎焊,研究了SiC陶瓷真空钎焊接头的界面显微组织和界面形成机理.试验中采用扫描电子显微镜(SEM)对接头组织进行了观察,并进行了局部能谱分析.结果表明,接头界面产物主要有TiC,Ti5Si3,Zr2Si,Zr(s,s),Ti(s,s)+Ti2(Cu,Ni)和(Ti,Zr)(Ni,Cu)等.接头的界面结构可以表示为:SiC/TiC/Ti5Si3+Zr2Si/Zr(s,s)/Ti(s,s)+Ti2(Cu,Ni)/(Ti,Zr)(Ni,Cu).钎焊过程分为五个阶段:钎料与母材的物理接触;钎料熔化和陶瓷侧反应层开始形成;钎料液相向母材扩散、陶瓷侧反应层厚度增加,钎缝中液相成分均匀化;陶瓷侧反应层终止及过共晶组织形成;钎缝中心金属间化合物凝固.在钎焊温度960℃,保温时间10 min时,接头抗剪强度可达110 MPa.  相似文献   

14.
采用Ag Cu Ti活性钎料对Invar合金和Si3N4陶瓷进行钎焊连接,研究了接头界面组织及其形成机制,分析了钎焊工艺参数对接头界面结构和性能的影响。结果表明,钎焊过程中液态钎料中的活性元素Ti与Si3N4陶瓷发生反应,在陶瓷界面形成致密的Ti N和Ti5Si3反应层;同时,Invar合金向液态钎料中溶解,与活性元素Ti反应生成脆性的Fe2Ti和Ni3Ti化合物。钎焊温度和保温时间影响Si3N4陶瓷界面反应层的厚度以及接头中Fe2Ti和Ni3Ti脆性化合物的形成量和分布,这两方面共同决定着接头的抗剪强度。当钎焊温度为870℃,保温15 min时,接头的平均抗剪强度最大值达到92.8 MPa,此时接头的断裂形式呈现沿Si3N4陶瓷基体和界面反应层的复合断裂模式。  相似文献   

15.
研究了Ti含量(0wt%~7wt%)对Au-18Ni合金钎料性能的影响。结果表明:Ti的加入提高了钎料合金的峰值温度,对起始点温度影响不大;随着Ti含量的增加,钎料在95Al_2O_3陶瓷上铺展面积增大,润湿角减小;Ti提高了钎料对95Al_2O_3陶瓷的润湿性。采用扫描电镜和能谱分析仪分析界面的显微结构和元素变化趋势,得出了(Au-18Ni)+5Ti钎料钎焊的95Al_2O_3/1Cr18Ni9Ti接头效果良好的主要原因是活性元素Ti与95Al_2O_3发生反应而引起界面能的变化所致。  相似文献   

16.
采用研制的CuMn基钎料对TZM与Kovar合金进行了高频真空钎焊研究。利用DTA、氦质谱捡漏仪、激光共聚焦显微镜、SEM、EDS等分析手段,测试了钎料的熔点、对TZM与Kovar合金润湿性,分析了钎缝的气密性、微观组织形貌、界面组织成分等。结果表明:在965℃时,CuMn基钎料在TZM与Kovar合金样品上的润湿角θ分别为30.77°和12.30°。在最大钎焊感应电流为430 A时,焊料对钎缝铺展均匀,钎缝区域无裂纹、无气泡等缺陷,焊件气密性测试漏气率优于6×10~(-11)Pa·m~3/s。钎缝中间层区域为CuMn基钎料凝固组织,钎料与TZM反应界面区域较窄,与Kovar合金的界面反应区域较宽。钎料中的Mn、Cu元素与Kovar合金中的Fe元素更容易相互扩散迁移发生冶金熔合反应。  相似文献   

17.
朱成俊  尚长沛 《焊接学报》2015,36(4):101-105
采用Ag Cu Ti活性钎料箔带分别在880℃/10 min和880℃/60 min两种工艺下对Mg Al2O4陶瓷进行了真空钎焊连接,接头冶金质量良好,两种工艺下接头抗剪强度分别为52.4 MPa和61.3 MPa.微观分析结果表明,靠近陶瓷母材附近生成了连续的扩散反应层结构,结合XRD结果,该层主要由Cu Al2O4和Ti O两种化合物组成;钎缝基体区由Cu(s,s),Ag(s,s)和Ti O相组成.  相似文献   

18.
采用自行设计制备的Cu-Sn-Ti-Ni活性粉末钎料,在钎焊温度890~930℃,保温时间5~20 min的条件下,对Al2O3陶瓷与Cr12钢进行真空钎焊试验,利用扫描电镜和能谱分析对钎焊界面的微观组织进行了分析。结果表明:钎料与两侧母材润湿良好并形成良好的冶金界面结合;钎焊过程中,钢母材中的Fe元素向钎料层中扩散,钎料中的Ti元素向母材两侧扩散并聚集,在钎料层钢母材侧生成Ti Fe2和Ti C化合物。对接头抗剪强度的分析结果表明,在钎焊温度890℃、保温时间10 min的条件下,接头的抗剪强度最高,达118 MPa。  相似文献   

19.
采用真空电弧熔炼技术制备了TiNi-V高温共晶钎料合金,研究了该钎料在Si3N4陶瓷表面的铺展行为.随后采用TiNi—V钎料实现了Si3N4陶瓷的钎焊连接,利用SEM,EDS以及XRD等分析方法,确定了接头的典型界面结构为:Si3N4/TiN+Ti-si化合物/NiV.重点研究了钎焊温度对接头界面结构及力学性能的影响.结果表明,随着钎焊温度的升高,熔融钎料与Si3N4陶瓷反应程度增加,导致钎缝中TiN+Ti-Si化合物层厚度不断增加,且在接头残余应力的作用下形成了大量显微裂纹,降低了接头性能.当钎焊温度为1200℃,钎焊时间为10min时,接头室温抗剪强度达到最大为28MPa.断口分析显示接头断裂于TiN+Ti-Si化合物层为脆性断裂.  相似文献   

20.
采用Cu-Ni-Ti非晶钎料钎焊Si3N4陶瓷,利用SEM、EDS等分析手段研究了其钎焊界面的微观结构.结果表明:反应层由两部分组成,其中紧靠Si3N4陶瓷的反应层Ⅰ由TiN化合物组成,Ti-Si化合物构成了反应层Ⅱ.在1100℃×10 min下钎焊时,其接头强度有最大值284.6 MPa.在相同的钎焊工艺条件下,非晶钎料接头强度高于同成分晶态钎料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号