共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《热加工工艺》2016,(21)
研究了Ni元素的加入对Cu-Sn-Ti-Ni钎料钎焊Al_2O_3/Cu的接头强度的影响。结果表明,随着Ni含量的增加,Al_2O_3/Cu的接头强度增加,当Ni含量为4%时,其接头强度达到95.42 MPa,再继续增加Ni,连接强度降低。Cu-Sn-Ti钎料连接的Al_2O_3/Cu的接头断裂位置为近焊缝处的陶瓷断裂;添加Ni元素后,接头断裂位置发生变化:Ni含量低于3%时,为混合型断裂,即部分断裂在近焊缝处的陶瓷,部分断裂在焊缝处;不低于4%时,为焊缝处断裂。采用扫描电镜以及电子能谱仪分析界面的微观结构和成分,分析认为,Ni元素的加入,影响了Ti和Al2O3的反应,从而影响了Al2O3陶瓷和无氧Cu的接头强度。 相似文献
3.
4.
5.
6.
7.
8.
采用Ni-Cr-P-Cu钎料对316L不锈钢进行真空钎焊连接,分析了不同钎焊温度(930~980℃)和保温时间(5~30 min)对接头组织及抗剪强度的影响。结果表明,不锈钢与钎料的界面组织为镍基固溶体(固溶原子为Cu,Fe和Cr),而钎缝中心的组织为镍基固溶体-Cr Ni P共晶相以及Ni3P-镍基固溶体共晶相,其中共晶相中的镍基固溶体属于韧性相,弥散分布于钎缝中。升高钎焊温度或延长保温时间都会增加不锈钢和钎料界面的镍基固溶体的厚度,同时会增加钎缝中心韧性相的数量。当钎焊温度为980℃,保温时间30min时,接头的抗剪强度最大,为95 MPa。 相似文献
9.
通过向Ag Cu共晶钎料中添加nano-Al2O3增强相(2%,质量分数)并采用高能球磨的方法获得了Ag Cu+nano-Al2O3复合钎料(Ag Cu C钎料)。采用Ag Cu C钎料实现了TC4合金与Al2O3陶瓷的高质量钎焊连接,确定了TC4/Ag Cu C/Al2O3钎焊接头的典型界面组织结构为:TC4/α-Ti+Ti2Cu扩散层/Ti3Cu4层/Ag(s,s)+Ti3Cu4+Ti Cu/Ti3Cu4层/Ti3(Cu,Al)3O层/Al2O3。Nano-Al2O3的添加抑制了钎缝中连续的Ti-Cu化合物层的生长,同时在钎缝中形成了颗粒状Ti-Cu化合物相增强的Ag基复合材料,改善了钎焊接头的界面组织。随着钎焊温度的升高,各反应层厚度逐渐增加,颗粒状Ti-Cu化合物不断长大,Ag基复合材料组织逐渐细小。当钎焊温度T=920℃,保温时间t=10 min时接头抗剪强度达到最大为67.8 MPa,典型断口分析表明:压剪过程中,裂纹起源于钎角处并沿钎缝扩展后转入Al2O3陶瓷,最终在Al2O3陶瓷母材侧发生断裂。 相似文献
10.
《金属学报》2017,(6)
首次采用Al-5.6Si-25.2Ge钎料对Cu/Al异种金属进行了炉中钎焊,分别从钎料的熔化特性、铺展润湿性、Cu侧界面组织以及钎焊接头强度等方面进行了系统研究,并与Zn-22Al钎料钎焊结果进行对比。结果表明,Al-5.6Si-25.2Ge钎料具有较低的熔化温度(约541℃),同时在Cu、Al母材上均具有良好的铺展润湿性。Al-5.6Si-25.2Ge/Cu界面由CuAl_2/CuAl/Cu_3Al_2三层化合物组成,其中CuAl和Cu_3Al_2呈层状,厚度较薄,仅为1~2 mm;CuAl_2呈胞状,平均厚度约为3 mm。Zn-22Al/Cu界面结构为CuAl_2/CuAl/Cu_9Al_4,其中CuAl_2层平均厚度高达15 mm。接头抗剪切强度测试结果表明,Zn-22Al钎料钎焊Cu/Al接头抗剪切强度仅为42.7 MPa,而Al-5.6Si-25.2Ge钎料钎焊Cu/Al接头具有更高的抗剪切强度,为53.4 MPa。 相似文献
11.
借助润湿试验、热分析等手段分析了AlSi12钎料和AlSiNi钎料的钎焊工艺性.使用扫描电镜、能谱分析、力学性能测试等手段分析了AlSi12,AlSiNi钎料钎焊铝/钢接头的组织形貌、断口形貌、相组成和力学性能.结果表明,AlSiNi钎料对钢的润湿性优于AlSi12钎料,但钎料熔化区间稍有扩大;在焊缝/钢界面处,AlSiNi钎料钎焊接头金属间化合物层的厚度为8.1 μm,比AlSi12钎料钎焊接头金属间化合物更薄,分布也更均匀;AlSiNi钎料钎焊接头中的含Ni金属间化合物塑韧性更好,与母材钢的结合力更强,AlSiNi钎料钎焊铝/钢接头抗拉强度高于AlSi12钎料钎焊接头. 相似文献
12.
采用化学镀方法在BAg45CuZn钎料表面镀覆微米锡层,并用镀锡银钎料以火焰钎焊工艺连接H62黄铜。借助金相显微镜、扫描电镜(SEM)和X射线衍射仪(XRD)分别分析锡化学镀层、H62黄铜钎焊接头的显微组织和物相,并利用万能拉伸机和SEM表征钎焊接头的抗拉强度和断口形貌。结果表明,锡化学镀层结晶晶粒呈现明显的(110)、(210)择优取向,化学镀锡银钎料连接的接头中母材与钎缝结合紧密,接头组织中富Cu相减少,出现Cu_5Zn_8化合物相。随着基体钎料表面镀锡含量升高,钎焊接头的抗拉强度呈现先升高后降低趋势。在化学镀锡含量为6.0%(质量分数)时,钎焊接头的抗拉强度为353MPa。镀锡前后钎焊接头的拉伸断口均呈现韧性断裂。 相似文献
13.
14.
应用Cu-11%Sn-2%Ni微晶钎料对25Cr3MoA钢和YG6硬质合金进行了真空钎焊,观察了接头组织形貌,建立了钎料层/母材原子互扩散模型,定量分析了焊接区合金元素的分布特征,并在专用仪器上测试了接头的剪切强度.结果表明:使用铜基微晶钎料钎焊25Cr3MoA和YG6,润湿性和铺展性良好,形成的钎缝饱满致密,接头钎着率高;钎缝组织以铜固溶体为主相,其间分布着Cu3Sn相,富Ni的Cu9NiSn3相以及少量的γ-Fe相.铜原子从钎缝向母材的扩散深度约为25μm.应用铜基微晶钎料可实现25Cr3MoA与YG6的真空扩散钎焊连接,接头剪切强度较高,达169 MPa. 相似文献
15.
使用不同成分的Zn-Al钎料对铜铝异种金属进行火焰钎焊,研究其力学性能。利用光学显微镜、扫描电镜和能谱研究不同Zn-Al钎料对Cu/Al钎焊接头钎焊性、力学性能及显微组织的影响。结果表明:随着Al含量的增加,Zn-Al钎料在Cu和Al上的铺展面积逐渐增大。当钎料中Al含量为15%时,Cu/Al接头的抗剪强度达到最大值88MPa;随着组织的变化,钎缝硬度值呈现HV122到HV515不等的分布。另外,钎缝组织的成分主要为富Zn相和富Al相,但是当钎料中Al含量为2%和15%以上时,靠近Cu侧的界面处会分别形成CuZn3和Al2Cu两种完全不同的金属间化合物。研究Zn-Al钎料中铝含量对Cu/Al接头界面化合物类型的影响。 相似文献
16.
17.
18.
19.
采用研制的CuMn基钎料对TZM与Kovar合金进行了高频真空钎焊研究。利用DTA、氦质谱捡漏仪、激光共聚焦显微镜、SEM、EDS等分析手段,测试了钎料的熔点、对TZM与Kovar合金润湿性,分析了钎缝的气密性、微观组织形貌、界面组织成分等。结果表明:在965℃时,CuMn基钎料在TZM与Kovar合金样品上的润湿角θ分别为30.77°和12.30°。在最大钎焊感应电流为430 A时,焊料对钎缝铺展均匀,钎缝区域无裂纹、无气泡等缺陷,焊件气密性测试漏气率优于6×10~(-11)Pa·m~3/s。钎缝中间层区域为CuMn基钎料凝固组织,钎料与TZM反应界面区域较窄,与Kovar合金的界面反应区域较宽。钎料中的Mn、Cu元素与Kovar合金中的Fe元素更容易相互扩散迁移发生冶金熔合反应。 相似文献
20.
采用电弧熔炼TiNiB合金作为高温钎料对TiAl合金进行钎焊,研究了接头界面组织的形成及其随钎焊温度变化的演化过程.电弧熔炼的TiNiB合金钎料主要由Ti-Ni与TiNi3共晶组织及弥散分布的块状TiB2组成,DTA测试曲线表明钎料的熔点为1 120℃.钎焊过程中,TiAl基体向液态钎料中的溶解量决定了钎焊接头界面组织的形成及其演化过程.随着活性元素Ti和Al向液态钎料溶解量的增加,靠近钎缝侧的TiAl基体发生固态相变转化为β层;钎缝组织演化为Ti-Al-Ni三元化合物,并伴有少量的β相;块状的TiB2在过量活性元素Ti存在的情况下逐渐转变为长条状的TiB相. 相似文献