首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
反应电火花沉积TiN/Ti复合涂层机理与性能   总被引:2,自引:0,他引:2  
利用DZ-1400型电火花沉积/堆焊机,以工业纯钛TA2为电极,以工业纯氮为保护气和反应气,在TCA钛合金表面上制备了TiN/Ti复合涂层.用SEM、XRD、AES等仪器对涂层、物相、微观结构、元素组成及界面行为进行分析,测定了涂层的显微硬度,利用自制磨损试验机对比了涂层与淬火回火65Mn的磨损性能.结果表明,TiN/Ti复合涂层与基体形成良好的冶金结合,涂层主要由钛和反应合成的TiN、Ti2N相组成,组织致密、均匀、连续,涂层平均显微硬度可达1390HV0.1,约是基体硬度的6.3倍,涂层耐磨性良好.  相似文献   

2.
金属陶瓷多弧离子镀TiN/TiAlN涂层的结构与性能   总被引:2,自引:0,他引:2  
采用多弧离子镀技术在Ti(C,N)基金属陶瓷基体上沉积了TiN/TiAlN涂层,通过扫描电镜、能谱仪、X射线衍射仪、原子力显微镜等分析技术对其显微组织、成分、相结构、粗糙度及涂层与基体间的结合强度进行了分析.结果表明,多弧离子镀TiN/TiAlN涂层后试样的表面为金黄色,涂层光滑平整,其均方根粗糙度为20.6 nm,显微硬度达到2808 HK.TiN相和TiAlN相均存在强烈的(111)择优取向.Al的含量从涂层内部到表面逐渐增大,呈现梯度分布特征.TiN/TiAlN涂层与金属陶瓷之间的结合强度高达57.52 N.  相似文献   

3.
采用多弧离子镀技术在Ti(C,N)基金属陶瓷基体上沉积了TiN/TiAlN涂层,通过扫描电镜、能谱仪、X射线衍射仪、原子力显微镜等分析技术对其显微组织、成分、相结构、粗糙度及涂层与基体间的结合强度进行了分析。结果表明,多弧离子镀TiN/TiAlN涂层后试样的表面为金黄色,涂层光滑平整,其均方根粗糙度为20.6nm,显微硬度达到2808HK。TiN相和TiAlN相均存在强烈的(111)择优取向。Al的含量从涂层内部到表面逐渐增大,呈现梯度分布特征。TiN/TiAlN涂层与金属陶瓷之间的结合强度高达57.52N。  相似文献   

4.
以TiN、TiAlN为主的过渡族金属氮化物硬质涂层以其较高的表面硬度、良好的耐磨以及抗高温氧化性能,被广泛应用于材料表面防护涂层。然而,涂层内部积聚的高内应力却容易易引发起涂层与基体的结合力问题。利用PVD技术很难在材料表面制备出厚度超过10微米的TiN或TiAlN涂层。多层复合结构能够有效控制涂层中的应力分布,从而使得其成为获得较厚硬质涂层的一种有效方法。本文在TC4合金以及Si(100)基体上利用等离子增强离子镀技术制备了具有不同复合层数的多层Ti/TiN涂层,并研究了复合层数对涂层力学性能的影响。结果表明,随着复合层数的增加,涂层的各项力学性能得到了显著强化。涂层的显微硬度高达2750HV,厚度大于50微米,且具有较好的韧性。涂层的韧性与显微硬度成正比例关系。同时,48层复合结构的Ti/TiN涂层具有低于0.35的摩擦系数以及最佳的抗磨损性能。然而,随着复合层数的进一步增加,涂层与基体的界面显著弱化了涂层的结合强度。  相似文献   

5.
以TiN、TiAlN为主的过渡族金属氮化物硬质涂层以其较高的表面硬度、良好的耐磨以及抗高温氧化性能,被广泛应用于材料表面防护涂层。然而,涂层内部积聚的高内应力却容易引发涂层与基体的结合力问题。利用PVD技术很难在材料表面制备出厚度超过10μm的TiN或TiAlN涂层。多层复合结构能够有效控制涂层中的应力分布,从而使得其成为获得较厚硬质涂层的一种有效方法。本工作在TC4合金以及Si(100)基体上利用等离子增强离子镀技术制备了具有不同复合层数的多层Ti/TiN涂层,并研究了复合层数对涂层力学性能的影响。结果表明,随着复合层数的增加,涂层的各项力学性能得到了显著强化。涂层的显微硬度HV0.25高达27500 MPa,厚度大于50μm,且具有较好的韧性。涂层的韧性与显微硬度成正比例关系。同时,48层复合结构的Ti/TiN涂层具有低于0.35的摩擦系数以及最佳的抗磨损性能。然而,随着复合层数的进一步增加,涂层与基体的界面结合强度显著弱化。  相似文献   

6.
运用电弧离子镀技术,采用单独的钛、铝靶材,在TC4钛合金表面制备了TiN/TiAlN多层复合涂层,利用SEM、EDS对涂层微观组织进行了分析,并测试了涂层显微硬度和耐磨损性能.结果表明:多层复合涂层厚度约为2.5μm.经镀膜,试样表面粗糙度提高,Ra值为0.541 μm.涂层表面Ti/Al原子比约为0.9.涂层表面显微硬度HV0.025为23.5 GPa.由于涂层表面硬度高,且多层复合的微观结构使得涂层有优异的结合力与内聚力,使得复合涂层试样的磨损失重大大低于未处理的试样.  相似文献   

7.
目的研究不同复合涂层的结构及其对力学性能的影响。方法采用等离子体增强磁控溅射系统在奥氏体不锈钢表面分别进行等离子体氮化、(Cr,Ti)N涂层、氮化+(Cr,Ti)N涂层、氮化+Cr+(Cr,Ti)N涂层四种复合表面强化处理。采用XRD、SEM、纳米压痕仪、摩擦磨损仪和划痕仪等分别研究了不同改性层对微观结构以及力学性能的影响。结果氮化后,形成了较高含氮量的过饱和固溶体相(γN),并伴有少量Cr_2N和Fe_2N析出,硬度及杨氏模量分别为18.3 GPa、264.7 GPa。氮化后原位沉积涂层有效避免了氮化物相的析出,过饱和氮原子向基体进一步扩散,增加了氮化层的深度。两种氮化后复合(Cr,Ti)N涂层的硬度和模量均高于单一的(Cr,Ti)N涂层(分别为20.2GPa和271.8GPa),其中氮化+(Cr,Ti)N涂层的硬度和模量均最高(分别为25.4 GPa和345.6 GPa),氮化+Cr+(Cr,Ti)N涂层次之(22.4 GPa和326.3 GPa)。由于氮化层起到了良好的梯度过渡作用,氮化+(Cr,Ti)N涂层的膜基结合力最高,从单一涂层的9.5 N提高到50.9 N,其摩擦系数降低到0.43,磨损量最低,仅为基体的0.66%。结论氮化+(Cr,Ti)N复合涂层的力学性能最佳。  相似文献   

8.
电弧离子镀电磁线圈电压对TiAlN涂层结构及性能的影响   总被引:1,自引:1,他引:0  
目的 揭示电弧离子镀过程中,电磁和永磁复合磁场耦合作用下电磁线圈偏压对TiAlN涂层结构及性能的作用规律,优化TiAlN涂层制备工艺。方法 采用电弧离子镀技术在M2高速钢基体表面沉积高Al含量Ti0.33Al0.67N涂层(TiAl靶,原子数分数,Ti∶Al=1∶2)。改变电磁线圈电压,研究涂层微观组织结构、表面粗糙度、硬度、膜/基结合力和耐磨性的变化规律。结果 在15~45 V范围内,电磁线圈电压小于30 V时,Ti0.33Al0.67N涂层内部致密;线圈电压大于30 V时,涂层内部变得疏松。线圈电压为15 V时,TiAlN涂层表面粗糙度最小,为0.2 μm。随着线圈电压升高,Ti0.33Al0.67N涂层硬度增大,线圈电压为45 V时,Ti0.33Al0.67N涂层硬度达到最大,为3866HV0.025。随着线圈电压的升高,Ti0.33Al0.67N涂层膜/基结合力及耐磨性先增加后减小,线圈电压为15 V时,结合力最高,为95.4 N,磨损率达到最低,为1.62×10-15 m3/(N?m)。结论 在线圈电压较小时,随着电压的升高,作用于阴极靶材的磁场强度增加,阴极弧斑速度加快,每个弧光点维持时间缩短,能量降低,离化率升高,溅射出的液滴数量减少,涂层结构致密,粗糙度降低,硬度和耐磨性能升高;随着线圈电压进一步升高,磁场强度继续增大,弧斑运动受到的磁性束缚力增大,弧斑运动半径向靶材中心收缩,作用于固定位置的弧光累计时间更长,离化率降低,液滴增多,涂层综合性能下降。  相似文献   

9.
《铸造技术》2017,(4):851-854
采用物理气相沉积和表面涂覆相结合的方法对汽车齿轮进行了表面改性处理,研究了离子氮化、离子氮化+TiN、离子氮化+TiAlN涂覆处理对汽车齿轮表面粗糙度、物相、截面硬度和摩擦磨损性能的影响。结果表明,离子氮化+TiN和离子氮化+TiAlN处理后的表面粗糙度相比离子氮化层有明显改善。三种表面改性层的显微硬度都明显高于汽车齿轮基体,且离子氮化+TiN和离子氮化+TiAlN涂覆处理后的表层显微硬度远大于离子氮化层;离子氮化+TiN和离子氮化+TiAlN涂覆处理后的表层摩擦系数小于氮化处理表层,表面改性层耐磨效果从高至低依次为:离子氮化+TiAlN>离子氮化+TiN>离子氮化。  相似文献   

10.
为了研究Mo元素对TiAlN涂层的微观形貌组织和摩擦学行为的影响,采用多弧离子镀技术,在4Cr13表面沉积了TiAlMoN四元涂层。结果表明:TiAlMoN涂层的表面组织致密,无气孔和裂纹,Ti、Al、Mo和N的质量比为3∶3∶3∶1,显微硬度达到了2922 HV0.1,且结合强度超过了35N。形成了以立方结构的AlN和面心立方结构的TiN结构为主的多元复合结构。在不同的加载载荷下,TiAlMoN涂层动摩擦因数随加载载荷的增大而降低,主要是由于Mo_2N的自润滑作用。磨损形式主要是三体磨粒磨损,磨损产生的磨屑也越多。  相似文献   

11.
采用化学气相沉积法,在硬质合金材料表面制备Ti CN/Fe2O3/Ti N复合型涂层,研究复合型涂层的微观组织、硬度、物相和界面结合力。结果表明,沉积温度为1 200℃时,复合涂层的微观硬度为1 827 HV,其与基体的结合强度最大,临界载荷为134.9 N。  相似文献   

12.
对Ti6Al4V进行以氮气为气源的无氢离子氮化工艺研究,氮化温度分别为700、750、800和900℃,保温时间4 h,通过金相检验、显微硬度测定和X射线衍射结构分析,研究了离子氮化温度等参数对渗层厚度、硬度和组织结构的影响规律。结果表明:温度是影响无氢离子氮化渗层厚度、硬度的主要因素,900℃的氮化层表面硬度达到897 HV,渗层厚度达到0.32 mm;氮化层由Ti2N(ε相)和TiN(δ相)组成。  相似文献   

13.
不同厚度TiN和TiAlN涂层残留应力分析   总被引:1,自引:0,他引:1  
TiN和TiAlN涂层常应用于精冲模,采用XRD技术分析了不同厚度TiN和TiAlN涂层的相变化,并采用Sin2ψ法测量了TiN涂层和基体以及TiAlN基体的残留应力,应用显微硬度计测量了涂层的显微硬度。结果表明:TiN涂层(111)和(222)晶面存在明显择优取向,涂层残留应力分布在-2 347~-1 920MPa,基体残留应力分布在-154.9~-69.21 MPa,均随厚度增加而减小;TiAlN涂层主要相成分为Ti3Al3N2,且(107)晶面存在择优取向,基体残留应力分布在-123.7~469.5 MPa,主要呈拉应力状态,且随厚度增加而增大,对模具寿命有较大影响;TiN和TiAlN涂层显微硬度随厚度增加而增大。  相似文献   

14.
为提高口腔医学领域用纯钛铸件的表面性能,改善其美观效果,用辉光等离子氮化、脉冲电弧离子镀涂层复合处理纯钛铸件,使用扫描电镜、接触角测量系统及X射线衍射分析仪评价其表面性能及晶相结构组成,再用分光测色计分析其色彩学特征。结果表明,纯钛铸件等离子氮化、镀氮化钛涂层复合处理后表面形成均匀稳定的TiN复合梯度涂层;人工唾液在复合处理试件表面的接触角(60.29±2.00)°明显小于纯钛(73.12±3.29)°;颜色均匀美观,在CIE表色系中L*:61.22±0.455、a*:1.84±0.055、b*:25.66±0.219,呈金黄色,表面晶相结构以耐磨性较好的TiN、Ti2N为主。  相似文献   

15.
钛合金表面原位合成TiN渗镀层摩擦性能研究   总被引:2,自引:0,他引:2  
采用双层辉光离子渗金属技术在钛合金TC11表面原位合成TiN渗镀层以提高其耐磨性。利用OM、SEM、EDS、XRD对TiN渗镀层的形貌、组织成分、相结构进行分析;通过显微硬度、划痕试验对TiN层力学性能进行研究;通过常温磨损试验研究了TC11合金表面TiN渗镀层摩擦磨损行为及机理。结果表明,在常温磨损试验条件下TiN层摩擦系数下降一半,表现出较好的减磨耐磨性能;渗镀层显微硬度达到1400HV0.2;渗镀层与基体结合力为45N,结合强度高。  相似文献   

16.
《铸造技术》2016,(5):918-921
采用真空电弧离子镀工艺在H13钢表面制备Ti Al N/Cr Al N复合涂层,利用划痕试验仪、盘式摩擦磨损试验机、金相显微镜和努氏硬度计分析Ti Al N/Cr Al N膜层的结合力和摩擦学性能,金相组织形貌和试样表面的显微硬度。结果表明,Ti Al N/Cr Al N复合薄膜表面组织分布均匀,结合致密,涂层与基体间的结合力是影响涂层承载能力的主要因素之一,Ti Al N复合涂层的摩擦性能优于H13基体和Cr Al N复合涂层的摩擦性能,Ti Al N/Cr Al N复合涂层的结合力分别为35 N和24 N,沉积有Ti Al N涂层试样表面摩擦系数最小,减摩效果最好,耐磨性能优越,并能有效地抵抗摩擦磨损。  相似文献   

17.
陈强  张而耕  周琼  黄彪  梁丹丹  韩生  李耀东 《表面技术》2021,50(10):230-238
目的 研究Si、C单元素掺杂及其共同掺杂TiAlN涂层对涂层性能的影响.方法 基于阴极电弧+辉光放电技术,在SUS304不锈钢基体及硬质合金刀具上分别制备nc-(Ti,Al)N、nc-(Ti,Al)N/a-SiNx、nc-TiAlCN及nc-TiAlCN/a-SiNx/a-C纳米复合薄膜,通过SEM观察涂层的微观组织形貌,并借助EDS表征涂层的元素成分,用XRD分析涂层的物相构成,探究C、Si元素对涂层生长的影响.采用纳米硬度仪测试涂层的硬度,采用二维轮廓仪及三维形貌仪表征涂层的表面粗糙度及表面形貌,通过滑动摩擦磨损试验测定涂层的耐磨性,用纳米划痕仪表征涂层的摩擦系数及涂层与基体的结合强度,用铣削实验表征涂层的切削性能.结果 该技术制备的TiAlN涂层,内部晶相结构复杂,硬度为29.57 GPa,主要归因于Ti2AlN、Ti2N等硬质相及TiN0.3相的形成降低了涂层的晶格常数.此为首次报道通过物理气相沉积方法制备含TiN0.3相的涂层.TiAlSiN涂层的硬度最高,为37.69 GPa,且耐磨性最好,主要原因是Si的添加起到了细晶强化和晶界强化的作用.C掺杂TiAlN使涂层析出更多非晶相,涂层硬度降低.C、Si元素共同掺杂,使得nc-TiAlCN/a-SiNx/a-C涂层表现出较低的摩擦系数及表面粗糙度,但与基体的结合性能最差,nc-(Ti,Al)N/a-SiNx薄膜的结合强度最好.结论 涂层均提高了基体表面的显微硬度,Si、C元素的掺杂可使涂层的某些性能得以大幅提升,但在实际应用中,还需根据应用需求选择合适的涂层.  相似文献   

18.
目的 提高锆合金在高温高压环境中耐动水腐蚀性能。方法 利用多弧离子镀技术(MAIP)在Zr-4合金表面分别制备了Al2O3涂层和Cr/TiAlN复合涂层,利用磁控溅射技术(MS)在Zr-4合金表面制备了TiN涂层。通过堆外高压釜实验,对比研究了三种不同涂层的耐高温高压动水腐蚀性能,利用自动划痕仪检测膜基结合力,利用XRD分析涂层的物相成分,利用SEM观察涂层腐蚀前后的微观形貌,利用EDS对涂层元素种类与含量进行分析。结果 多弧离子镀技术制备的Al2O3涂层和Cr/TiAlN涂层致密度较高,但表面存在少量大颗粒与微孔洞;磁控溅射技术制备的TiN涂层均匀平整,表面大颗粒较少。Al2O3涂层、TiN涂层和Cr/TiAlN涂层可承受的临界载荷分别为26、16、26.5 N。在实验条件下,Cr/TiAlN涂层和TiN涂层表面均发生了剥落或腐蚀现象,且这两种试样表面均检测出大量的ZrO2,而Al2O3涂层几乎未被破坏,基体得到了充分防护。结论 利用多弧离子镀技术在Zr-4合金表面制备的Al2O3涂层和Cr/TiAlN涂层的膜基结合力较高,利用磁控溅射技术制备的TiN涂层的膜基结合性能较差,其中Al2O3涂层具备良好的耐腐蚀性能,在高温高压动水腐蚀环境中能够有效地保护锆合金基体。  相似文献   

19.
氩弧熔覆原位自生TiC/TiN增强镍基复合涂层分析   总被引:1,自引:0,他引:1  
以Ti粉、C粉、TiN粉和Ni60A粉末为原料,利用氩弧熔覆技术在16Mn钢基材表面成功制备出Ni基增强相复合涂层,应用OM、SEM、XRD对复合涂层的显微组织和物相进行了分析。结果表明,复合涂层物相由TiC、TiN颗粒,γ-Ni奥氏体枝晶和枝晶间的Cr23C6共晶组织组成。涂层的硬度(HV0.2)达到900,较基体16Mn钢提高了3倍多;相对耐磨性较基体16Mn钢提高了8倍。  相似文献   

20.
对QBe1.9铜合金进行双辉等离子渗Ti及后续离子氮化复合处理,在其表面制备TiN(Ti_2N)/Ti合金层以改善其摩擦磨损性能。采用扫描电镜、能谱、辉光放电光谱仪、X射线衍射仪等手段观察分析Ti-N复合渗合金层的组织、成分及相结构,对合金层硬度及导电性进行了分析,并利用往复球盘摩擦磨损试验机研究QBe1.9基材及其Ti-N复合渗后的摩擦磨损性能。结果表明:经过Ti-N复合处理后,在QBe1.9铜合金表面形成厚度为27μm的复合渗层,该渗层包括表面富TiN(Ti_2N)合金层和Ti-Be-Cu扩散过渡层;QBe1.9铜合金经Ti-N复合渗后,表面硬度达964 HV,比基材的硬度明显提高;摩擦因数和比磨损率分别仅为未处理基材的30%和1.38%,达到减摩耐磨效果。表面高硬氮化物的形成是Ti-N复合渗改善QBe1.9铜合金表面性能的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号