首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
淬火—配分(QP)钢是近年来发展起来的一种含有残余奥氏体的低碳低合金高强度钢板。本文通过单向拉伸试验得到了QP980钢板的基本力学参数,通过动态拉伸试验得到了QP980钢强度与延伸率随着应变速率变化而变化的曲线。并通过QP980钢试验模的开发对其优良的成形性能进行了验证。结果表明:QP980钢板具有良好的静态和动态力学性能,其实际冲压成形能力接近DP590钢板,明显强于DP780和DP980钢板。  相似文献   

2.
针对先进高强度双相钢的成形极限进行研究,通过对4种不同型号的钢板试件(DP590、DP780、DP980和DP1180)进行静态单轴拉伸试验,分别获取这4种型号先进高强度钢的真实应力-应变曲线以及相关力学参数。同时,基于Hill'48屈服准则以及Mohr-Coulomb (MMC)失效准则编写VUMAT子程序,通过有限元仿真软件ABAQUS,对试件进行数值仿真模拟,通过分析处理仿真数据,得到先进高强度双相钢钢板的成形极限曲线。结合现有的成形极限曲线的相关理论方法,最终建立适用于先进高强度双相钢成形极限的理论模型。最后与现有的标准成形极限曲线理论模型以及仿真数据分别进行对比验证,验证了所建模型的准确性和有效性。  相似文献   

3.
选取具有较高强度等级的980QP钢,将其性能特点与传统的DP钢进行对比分析,结果显示:980QP钢的伸长率明显优于980DP钢,甚至优于较低强度等级的780DP钢。基于以上理论分析,在某车型中选取典型零件,分别对两种材质进行了冲压成形性分析和实际冲压生产验证。结果表明,980QP钢与相同强度等级的普通高强钢相比,伸长率提高了1倍左右,成形性能优良,甚至可与强度等级较低的590DP钢媲美;该验证结果与前述的理论分析结果基本吻合,证实980QP钢可用于制作有拉延工艺的、形状相对复杂的车身结构件;但同时,980QP钢的回弹现象更为严重,试冲件的回弹值远超过CAE分析值,需在前期的工艺分析和模具设计阶段重点关注。  相似文献   

4.
高强钢零件的延迟断裂现象是汽车使用安全性的严重威胁。针对QP980和DP980两种高强度汽车用钢板,基于单向拉伸实验和电化学充氢,分析了预变形对高强钢充氢后的伸长率及强度的损失规律,对比了DP980和QP980的抗延迟断裂性能。研究发现,预应变从0至7%变化时,QP980和DP980均发生严重的塑性损失,但在同一预应变下,QP980的各项塑性损失几乎均大于DP980,得出QP980的抗延迟断裂性能较DP980差。通过断口形貌分析,发现QP980相比DP980更易受到氢的侵入从而脆化,从而验证了实验结果的准确性和科学性。  相似文献   

5.
利用拉深试验研究了三种抗拉强度为980MPa级别超高强汽车薄板钢的延迟开裂性能。结果表明,DP980钢的组织主要为马氏体+铁素体;QP980钢的组织主要为马氏体+铁素体+少量残余奥氏体;TWIP980钢的组织主要为奥氏体。DP980和QP980钢耐延迟开裂性能较好,而TWIP980钢的耐延迟开裂性能最差。此外,奥氏体在变形过程中稳定性对钢的延迟开裂性能有重要影响。  相似文献   

6.
冲击及吸能性能是高强钢在汽车安全中的重要特性,基于帽形冲击实验及仿真,对QP980、DP980和DP780钢的吸能特性及其规律性展开对比分析及研究。进行了厚度为1.6 mm的3种板料帽形试样碰撞实验,对碰撞实验进行了有限元仿真,通过比较相同冲击速度下实验与仿真中压溃力-时间曲线、最大压溃距离及变形模式,验证了仿真模型的准确性,并基于仿真模型,预测了不同初始碰撞能量情况下试样的变形模式及变形行为。通过实验及有限元仿真,分析比较了QP980、DP980、DP780的吸能特性及其规律性,结果发现QP980的冲击碰撞性能较好,且相同碰撞能量下,DP980与QP980的帽形件变形模式基本相同。  相似文献   

7.
《塑性工程学报》2016,(1):89-92
采用光学网格应变分析技术对QP钢进行成形极限试验,评价两种QP钢的成形性能,并与传统的DP钢进行比较。结果表明,和原有的测量方式相比较,光学网格应变分析方法可靠性高,测量较为准确,能够消除人工测量产生的差异;和传统的高强钢DP980相比,第三代汽车用高强钢QP980和QP1180具有较好的成形性能。  相似文献   

8.
基于成形特性的宝钢QP980试验研究及典型应用   总被引:3,自引:0,他引:3  
刁可山  蒋浩民  陈新平 《锻压技术》2012,37(6):113-115,121
深入解析了宝钢第3代高强钢QP980与第1代高强钢DP980和DP780的力学性能、成形极限和扩孔性能等冲压成形特性的差异.试验结果表明:QP980具有良好的塑性,伸长率约为20%,接近于DP780,比DP980高约5%;QP980钢成形极限较高,QP980-1.2 mm的FLD0约为27%,与等厚度的DP780相当,而QP980-2.0mm的FLD0约为34%,明显高于等规格的DP980;QP980钢具有良好的扩孔性能,保障了翻边和扩孔性能,且优于DP980.研究结果表明,宝钢QP980与DP980相同强度等级的基础上与DP780成形性能相当,良好的强塑积满足于外形相对复杂、强度要求高的车身骨架件和安全件,并在典型复杂超高强钢骨架件上成功试冲得到验证.  相似文献   

9.
《模具工业》2017,(10):20-23
汽车座椅靠背边板零件的热门材料为DP钢,现采用宝钢第三代超高强钢QP980进行冲压,运用Auto Form有限元分析软件模拟QP980冲压成形过程,并对比分析DP980的成形状态,通过试验试制了QP980座椅靠背边板零件,并与仿真结果进行对比。结果表明,在相同工艺条件下,QP980具有更好的成形性,零件安全裕度较大,而DP980有开裂风险;同时CAE仿真能够准确预测零件成形过程中存在的缺陷,并优化工艺参数,指导模具设计工作。  相似文献   

10.
随着汽车轻量化的进一步发展,对车身材料的要求也越来越高。分别选用传统DP780材料以及宝钢第三代高强板QP980材料,运用AutoForm仿真分析软件对A柱加强板零件进行有限元模拟,模拟结果显示QP980可以满足该零件的成形要求,且具有一定的成形安全裕度,但回弹值较大,起皱比DP780材料严重。针对分析结果,给出了采用QP980材料进行零件设计时的注意事项。最后通过现场试制零件,验证现场实物与模拟结果相符。  相似文献   

11.
针对DP1180和QP1180两种超高强度汽车用钢板,通过微观组织分析和慢应变速率拉伸试验(SSRT)研究了这两种1180 MPa级超高强汽车钢的延迟开裂性能。试验结果表明,DP1180钢的微观组织为马氏体+铁素体,QP1180钢的微观组织为马氏体+铁素体+少量残余奥氏体。试验钢的延迟开裂性能用其在0. 1 mol·L~(-1)的HCl介质中与空气介质中的力学性能指标的比值表示。QP1180钢断裂时间、断面收缩率、断后伸长率、抗拉强度的比值均低于DP1180钢,说明0. 1 mol·L~(-1)的HCl介质对QP1180钢力学性能指标影响更大些,其延迟开裂的敏感性更高。  相似文献   

12.
基于自行设计制造的回弹实验模具,针对帽形件进行了大量的实验研究与分析,比较了HC420LA、HC420/780DP和QP980这3种不同性能的高强度钢板在不同U形弯曲成形的冲压工艺及不同成形状态下的回弹规律,为实际生产和设计提供理论指导。结果表明:任一冲压工艺下,HC420LA钢的回弹都远小于HC420/780DP钢与QP980钢;帽形件侧壁回弹在自由弯曲成形工艺下最小,法兰边回弹在中间预压料弯曲成形工艺下最小,而带压边力弯曲工艺下的回弹始终最大;随料厚的增加,3种高强度钢板的回弹不断减小,但料厚为1.4 mm的QP980钢进行中间预压料弯曲成形时,回弹呈反向增大的趋势;3种高强钢板的回弹随凸凹模间隙的增大而增大,180~280 kN压边力区间对HC420/780DP钢和QP980钢影响较小,而板料法兰边回弹随弯曲角度的增大而增大。  相似文献   

13.
为了探索QP980先进汽车高强钢的复杂变形行为,采用Z100双向拉伸试验机进行了十字形拉伸试样设计,在标准试样的基础上进行了优化并通过仿真模拟对中心变形区域的受力情况进行了分析,验证了试样的有效性。研究了金属薄板双向拉伸试验的屈服轨迹的计算方法,对QP980先进汽车高强钢分别采用力值比、应变速率比和位移速率比3种控制方式进行双向拉伸试验,加载比例分别为4∶0、4∶1、4∶2、4∶3、4∶4、3∶4、2∶4、1∶4和0∶4,根据塑性功相等原则计算获得了不同加载路径下QP980高强钢的屈服轨迹,通过对比分析采用应变速率比控制和力值比控制的屈服轨迹一致性更好。  相似文献   

14.
以高强度钢DP590为研究对象,采用二维轴对称单元和三维壳单元对冲裁和扩孔全过程进行数值模拟,模拟结果与试验结果的对比发现,预测精度和裂纹可视化效果与未考虑之前冲裁变形的预测结果相比有大幅度提高,扩孔率随冲裁间隙的增大(5%~15%)而增大。  相似文献   

15.
采用分离式Hopkinson压杆试验机、扫描电镜等对QP980、TRIP590钢进行不同应变速率下的高速冲击压缩试验,分析不同应变速率下两种汽车用高强钢的组织和性能。结果表明:两试验钢应力计算值与测量值相对误差在1.2%~3.3%,该误差较小且比较稳定,所以试验所得数据与二波公式基本吻合。两种汽车用高强钢的工程应力都随着应变速率的增大而增大,但QP980钢板所能达到的最大工程应力比TRIP590钢板大;冲击后,QP980钢板的组织变得更加板条化且细小,组织为均匀的铁素体和马氏体,而TRIP590钢板冲击后的组织变得粗大且不均匀,随应变速率的增大,原始组织中的铁素体在挤压的过程中向四周延伸组织逐渐变大,贝氏体组织被变大的铁素体组织掩盖,马氏体组织增多。  相似文献   

16.
汽车用先进高强钢的成形性能   总被引:1,自引:0,他引:1  
通过试验,对汽车用先进高强钢DP590、DP780、TRIP590的力学性能、微观金相组织、成形极限图进行研究,并与超深冲钢DC01成形极限进行对比。运用成形极限预测近似公式,对DP590、DP780、TRIP590、DC01的成形极限曲线进行预测,并与实测曲线进行对比。结果表明,DP钢和TRIP钢都具有较高的强度和良好的塑性,并具有较低的屈强比,能有效避免成形时局部颈缩和断裂。同时,DP钢和TRIP钢均具有良好的成形性能,DP590、TRIP590的成形能力甚至优于超深冲钢DC01。成形极限预测经验近似公式能很好的适用于DP590、DP780、TRIP590的成形极限预测,误差在2%以内,但对于DC01的成形极限预测误差则稍微偏大,约为4%。  相似文献   

17.
《塑性工程学报》2013,(4):23-26
Q&P钢是一种高强度高塑性的第三代先进高强度钢种,合理的微观组织结构和塑性变形过程中引发的相变诱导塑性,是决定其力学性能的关键因素。通过SEM观察确定QP980的微观组织为板条马氏体、铁素体和残余奥氏体的混合组织。由XRD实验测量得到QP980钢板在单向拉伸状态下不同应变量对其残余奥氏体转化量的影响规律,发现QP980中残余奥氏体的体积分数随应变量的增加呈非线性下降的趋势。根据O-C马氏体相变动力学模型,得出QP980中残余奥氏体含量和等效应变的关系函数。根据等功原理和混合硬化准则,建立了考虑TRIP效应的QP980多相本构模型,并与QP980单向拉伸实验得到的应力应变曲线对比,验证了该模型的有效性。  相似文献   

18.
研究了DP980-GMW2和QP980-GMW2钢板拉剪型焊点的金相组织、硬度分布和疲劳性能;采用扫描电镜分析了疲劳断口的形貌特征。结果表明:DP980-GMW2和QP980-GMW2钢板拉剪焊点的疲劳极限分别为1000和1200 N;焊核区都形成粗大的马氏体;由于马氏体回火,造成DP980和QP980钢板在热影响区都出现软化现象;疲劳断口由裂纹源、扩展区、瞬断区组成。  相似文献   

19.
温热环境下汽车用钢DP590板材屈服行为   总被引:1,自引:0,他引:1  
通过20℃、60℃、100℃、150℃、190℃温度下的单拉试验得到了汽车用钢DP590板材不同温度下的力学性能参数,并对其进行分析。研究表明,DP590板材在0°、45°、90°方向上的应力应变曲线随温度升高均呈现先降低、后升高现象。通过温热环境下的十字形试件双向拉伸试验,获得了DP590板材在温度20℃、60℃、100℃、150℃、190℃等效塑性应变在0.2%、1.0%、2.0%下的屈服轨迹。发现在同一温度下,DP590钢板在不同等效塑性应变下的屈服轨迹相似;而在同一等效塑性应变下,DP590板材在不同温度下的屈服轨迹形状不同,满足的屈服准则不一样。  相似文献   

20.
采用连续退火模拟试验研究了不同退火温度和闪冷温度对DP590钢性能的影响,基于连续退火模拟结果制定了塑性增强DP590钢工业试制关键参数,对塑性增强和传统工艺生产DP590钢的力学性能及显微组织进行了分析,并探讨了其塑性增强机理。研究结果表明,随退火温度和闪冷温度提高屈服强度提高,抗拉强度呈下降趋势,传统DP590钢中马氏体主要沿铁素体晶界呈细条状或粒状分布,铁素体晶粒尺寸6~8μm,马氏体体积分数11. 3%,而工艺改良后塑性增强DP590钢组织中马氏体呈弥散分布在铁素体基体内,其体积分数为8. 5%,另外含有非常细小的弥散分布粒状马氏体岛或残留奥氏体,经XRD和EBSD定量分析残留奥氏体体积分数约2%,残留奥氏体对最终产品性能提高起到关键作用,且批量生产性能保持了良好的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号