首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了回火处理对H13模具钢组织和力学性能的影响。结果表明,随着回火温度的升高,H13钢的回火硬度先降低后逐渐增加,达到峰值后又下降。在620℃保温时,随着保温时间的延长,H13钢的硬度降低。在620℃经过22 h回火后,H13钢的马氏体板条界面处出现了较多的碳化物。  相似文献   

2.
利用扫描电镜、金相显微镜、洛氏硬度计研究了P20塑料模具钢淬火及回火组织,并测定了硬度随淬火温度以及回火温度的变化.P20钢经830~920℃淬火得到板条马氏体.淬火后晶粒尺寸随淬火温度的升高有粗化的趋势但并不明显,直到890℃以后才明显粗化,因此,淬火温度应在830~890℃,以860℃为宜.P20钢硬度随回火温度升高而降低,碳化物析出增多并逐渐球化,马氏体板条边界逐渐变得模糊,有些板条合并变宽.P20钢经620℃×1 h回火后其硬度为32.8~35.8HRC,能满足预硬化硬度要求,而且经830~890℃淬火+620℃×1 h回火,硬度基本不随淬火温度变化,这将有利于工厂组织生产,因此最终选择预硬化工艺为860℃×30min淬火+620℃×1 h回火.  相似文献   

3.
为改善高速钢的性能,利用程序控制深冷箱对W6Mo5Cr4V2试件进行了不同温度(-120~-180℃)下的深冷处理,随后进行560℃×60 min回火处理。对深冷处理后的试件进行了显微组织观察,并对其硬度及红硬性进行了检测。结果表明,经深冷处理后马氏体基体上可析出大量弥散分布的碳化物,随深冷温度的降低,二次碳化物的尺寸减小,马氏体基体组织细化,试件的硬度提高。大、小二次碳化物的最小平均尺寸分别出现在-150和-120℃,经-180℃处理试样的硬度最高,为65.2 HRC,-150℃处理试件的红硬性表现为最好。  相似文献   

4.
研究了盾构刀具用5Cr5MoSiV1钢不同加热温度回火和保温时间对其显微组织和力学性能的影响。结果表明:试验钢在500~650℃回火1.5 h时,随着加热温度的升高,组织由板条状回火马氏体+残留奥氏体转变成等轴状回火索氏体+粒状碳化物,在550~600℃保温时出现二次硬化效应,且硬度在600℃左右时达到峰值,试验钢的冲击韧性随回火温度的升高而不断增强;600℃回火保温1~2.5 h时,马氏体随保温时间延长而不断分解,最终转变为保持马氏体位向的回火索氏体,试验钢的回火硬度随保温时间的延长而降低。为了使试验钢在回火后获得较好的强韧性配合,较佳的回火工艺为600℃×2 h。  相似文献   

5.
采用真空感应炉冶炼了试验钢,并进行了不同工艺的热处理。采用光学显微镜、扫描电镜对组织进行了观察,对洛氏硬度进行了检测。结果表明,试验钢淬火组织主要为细小的板条马氏体+大量残余奥氏体+未溶析出相,经-80℃深冷处理、低温回火后残余奥氏体含量逐步减少;随着淬火温度提高,回火马氏体基体逐渐粗化,第二相粒子数量逐渐减少,尺寸也减小;1030℃淬火并深冷处理后在150℃回火,试验钢获得最高的硬度,随着回火温度提高,基体组织逐渐由回火马氏体转变为回火屈氏体再到回火索氏体,第二相粒子逐渐粗化;硬度值先几乎不变,当温度超过450℃硬度值迅速下降,650℃时降低至34HRC。  相似文献   

6.
采用洛氏硬度计、扫描电镜和透射电镜等方法研究了在M2高速钢中添加微量Co对其回火组织和性能的影响。结果表明,两种试验钢回火之后的组织都为回火马氏体+少量残留奥氏体+碳化物。添加0.82%(质量分数,下同)Co使得M2高速钢的峰值硬度提高了约0.3 HRC,使600 ℃保温48 h之后的红硬性提高了约0.8 HRC,可以看出微量Co添加对M2高速钢的硬度和红硬性的提升效果不大,抗弯强度提高了约950 MPa,而使得M2高速钢的韧性略有降低,均为脆性断裂。通过对试验钢中的碳化物进行观察发现,两种试验钢析出的一次碳化物主要为大颗粒的MC型和M6C型碳化物,通过TEM分析之后发现,添加0.82%的Co使得试验钢中马氏体板条上长条针状M2C型的二次碳化物析出数量增多。  相似文献   

7.
对轧制态30CrMo锯片用钢在830~890℃范围内保温10 min油淬后,在380~500℃温度范围内保温60min后水冷处理。采用光学显微镜、冲击试验机及洛氏硬度计分别分析其金相显微组织、硬度、冲击韧性等。结果表明:淬火组织为淬火马氏体+残余奥氏体;随着淬火温度的升高,淬火马氏体组织数量增多,尺寸长大;硬度随淬火温度的升高由830℃的48 HRC逐渐提高到890℃的54 HRC。随着回火温度的升高,试样的组织由淬火马氏体逐渐转化为回火马氏体、回火马氏体+回火屈氏体、回火马氏体+回火索氏体组织;硬度逐步降低,韧性相应提高。最佳热处理工艺为860℃(保温10 min)淬火+440℃(保温60 min)回火。  相似文献   

8.
对轧制态75Cr1锯片用钢在800~880 ℃进行油淬并在400~480 ℃进行回火,采用光学显微镜、万能力学性能试验机、冲击试验机及洛氏硬度计分别分析其显微组织、力学性能变化规律。结果表明,淬火试样组织为马氏体+残留奥氏体;随着淬火温度的升高,马氏体组织不断粗化;硬度随淬火温度的升高由800 ℃的59 HRC逐渐提高到880 ℃的68 HRC。随着回火温度的升高,试样组织由淬火马氏体转化为回火马氏体、回火马氏体+回火索氏体组织;强度、硬度逐步降低,而塑性、韧性相应提高。最佳热处理工艺为840 ℃(保温20 min)淬火+460 ℃(保温60 min)回火。  相似文献   

9.
冷处理温度对1Cr20Co6Ni2WMoV钢组织和硬度的影响   总被引:3,自引:1,他引:2  
采用SLX-50程序控制深冷箱研究了马氏体热强钢1Cr20Co6Ni2WMoV经淬火(1060℃×1h)、不同温度(-30℃、-70℃、-196℃×2h)冷处理、回火(640℃×2h)后的微观组织及硬度变化。研究结果表明,经不同温度冷处理后,钢中析出M23C6型碳化物。随冷处理温度的降低,马氏体板条宽度减小,析出相M23C6数量增多,残余奥氏体的含量降低,钢的硬度值升高。  相似文献   

10.
分析了900℃淬火及200℃回火后GD钢的显微组织、硬度及低温冲击的断口形貌,研究结果表明:900℃淬火后GD钢组织由粗针状马氏体、残余奥氏体、碳化物组成,200℃回火时,马氏体中析出部分碳化物,回火组织由回火马氏体和碳化物组成。900℃淬火+200℃回火后的GD钢冲击时,随着温度的降低,其冲击功随之减小,随着GD钢所处的环境温度不断升高,断口宏观形貌中反映起裂区和裂纹纤维扩展区所占比例越来越大,微观形貌中存在解理面、撕裂棱和韧窝,其断裂机理为准解理断裂。  相似文献   

11.
采用中频感应加热炉对建筑用Q550D钢进行了不同工艺的回火处理。采用光学显微镜对显微组织进行了观察,对冲击功、硬度进行了检测,研究了回火时间和温度对组织和性能的影响。结果表明,当回火温度为200℃时,感应回火组织为回火马氏体,随着保温时间的增加,碳化物析出增多,马氏体逐渐分解,冲击功逐渐升高,硬度则逐渐降低;在200℃回火保温时间为10 min时,组织由低温感应回火时的回火马氏体逐渐向中温感应回火时的回火托氏体转变,随着回火温度升高,碳化物从马氏体板条中析出并长大,马氏体充分分解,组织趋于均匀化,冲击功则先提高,当回火温度超过350℃后稍有下降,硬度逐渐下降。  相似文献   

12.
探讨了淬火和回火温度对喷射成形M42高速工具钢显微组织及硬度的影响。结果显示:淬火温度低于1180℃时,钢的淬火态硬度随温度升高而增大;高于1180℃之后,钢的淬火态硬度随温度升高而减小。淬火温度升高过程中,钢中碳化物的数量呈减少趋势,马氏体不断粗化,同时残留奥氏体数量逐渐增加。钢的硬度随回火温度的升高逐渐增大,并在550℃时达到极大值,随后逐渐减小。回火温度升高过程中,马氏体中不断析出碳化物并聚集长大,同时马氏体和部分残留奥氏体会向回火马氏体转变。  相似文献   

13.
采用扫描电镜、洛氏硬度计对P20塑料模具钢进行淬火及回火后的显微组织观察及硬度测试,研究其在不同回火处理工艺下的硬度及显微组织变化规律,同时利用回火参数P研究了P20塑料模具钢的回火工艺。结果表明, 在350~450 ℃,随回火温度的增加,硬度变化不大;在450~650 ℃回火,试样的硬度发生明显下降趋势;随回火保温时间的延长,在350~450 ℃,硬度降低趋势较小;在500~650 ℃回火,在最初的8 h内,硬度迅速降低,继续延长保温时间,硬度下降速率变慢;随回火温度和保温时间的延长,碳化物析出量越来越多,并逐渐球化聚集长大,马氏体板条边界逐渐模糊,有些板条被早期形成的碳化物钉扎,致使部分板条马氏体粗化,有些板条合并变宽,导致其硬度降低。结合本文试验数据及回火参数P,可确定试验P20钢的最佳回火工艺为600 ℃×1 h。  相似文献   

14.
使用不同工艺对机床用W18Cr4V高速钢刀具进行了热处理,研究了热处理工艺参数对钢组织和性能的影响。结果表明,试验钢球化退火组织为球状珠光体+细小粒状碳化物,淬火组织为马氏体+残余奥氏体+少量碳化物,回火组织为回火马氏体+少量粒状碳化物及残余奥氏体。随着淬火温度的提高,抗拉强度、硬度和冲击韧度均先升高后降低,1200℃时达到最大值。随着回火温度升高,硬度先降低后升高,400℃时最低,600℃最高为65 HRC。综合考虑硬度及强韧性等因素,最优淬火温度为1200℃,最优回火温度为600℃。  相似文献   

15.
采用X射线衍射仪、扫描电镜、洛氏硬度计及摩擦磨损试验机等研究了不同温度回火及回火+深冷处理对M35高速钢微观组织、硬度、红硬性及耐磨性的影响.结果 表明:随着回火温度的升高,M35高速钢的硬度先下降后上升,最后急剧下降;在525℃回火+深冷处理后M35高速钢的洛氏硬度最大,为67.1 HRC;与只进行回火处理相比,回火+深冷处理后M35高速钢的洛氏峰值硬度提高了0.7 HRC,回火温度由550℃降至525℃,具有良好红硬硬度稳定性.随着回火温度的升高,M35高速钢中残留奥氏体减少,晶粒尺寸逐渐增大.深冷处理后M35高速钢的晶粒细化,磨损体积减小,525℃回火+深冷处理的M35高速钢具有最佳的耐磨性.  相似文献   

16.
研究了950℃×30 min油淬后不同回火保温时间对MC5冷轧辊钢组织和性能的影响。结果表明,随着回火保温时间从2 h增加到6 h,MC5冷轧辊钢的硬度相对于回火前硬度不断减小,回火2 h时冷轧辊钢的残余应力下降到了很低的水平;冷轧辊钢回火后的组织为回火马氏体和弥散的颗粒状碳化物;回火后组织中碳化物的尺寸比回火前的更为细小。  相似文献   

17.
采用力学性能测试、显微组织观察和断口失效分析等方法研究了回火保温时间对淬火+深冷处理后的A-100超高强度钢组织和力学性能的影响.结果表明,A-100超高强度钢482℃回火时在板条马氏体晶界上会析出逆转变奥氏体,马氏体周围析出M2 C型碳化物,且随回火保温时间增加,逆转变奥氏体数量增多、分散更均匀,马氏体晶粒尺寸有所增...  相似文献   

18.
熔炼了含0.117%Nb(质量分数)的30Cr13Nb0.1马氏体不锈钢。对钢锭进行了1 100℃保温2 h均匀化退火、1 020℃保温30 min水淬及分别在250、350和450℃回火2 h。随后采用光学显微镜、扫描电镜、X射线衍射仪等检测了钢的显微组织、硬度、冲击韧性及断口形貌。结果表明:经相同工艺淬火、不同温度回火的钢中碳化物均沿晶界析出,且随着回火温度的升高,碳化物析出量增多,其形态从点状、细链状转变为长链状和条片状,硬度先降低后升高,冲击韧性先升高后降低。此外,腐蚀电位和点蚀电位测量结果表明:450℃回火的钢耐腐蚀性能最差,350℃回火的钢耐蚀性能最好。  相似文献   

19.
18Cr2Ni4WA钢真空渗碳后热处理工艺的优化   总被引:1,自引:0,他引:1  
制定了两种不同的热处理工艺,研究18Cr2Ni4WA钢真空渗碳后回火、淬火和深冷工艺对材料组织和性能的影响。结果表明,18Cr2Ni4WA钢渗碳后,经高温回火、淬火、深冷和低温回火处理后,渗碳层深度几乎不受影响,表面残留奥氏体含量显著降低。经680 ℃×5 h两次高温回火+860 ℃淬火+-115.3 ℃深冷+160 ℃低温回火工艺处理后,试样表面硬度为64.2 HRC,渗碳层深度为0.86 mm;并得到由针状回火马氏体、少量残留奥氏体和弥散分布的点状碳化物组成的渗碳层组织和由低碳板条状回火马氏体组成的心部组织,不仅使得表面获得高硬度,同时保证了心部的强韧性。  相似文献   

20.
利用金相显微镜、洛氏硬度计等方法,研究了淬回火工艺对3.4wt%C高碳高铬铸铁组织及硬度的影响。结果表明:随淬火温度在960~1100℃逐步升高,基体由铸态的奥氏体转变为马氏体及残余奥氏体,一次碳化物及共晶碳化物未发生转变,二次碳化物逐渐减少,残余奥氏体逐渐增多;硬度先升高后降低,在淬火温度为1050℃时,硬度达到最高值64 HRC。随回火温度在450~650℃升高,基体组织由回火马氏体逐渐转变为回火索氏体,二次碳化物增多粗化,硬度逐步降低;最佳热处理工艺为1050℃/1 h空淬+510℃/1 h空冷回火,试样综合性能较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号