首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在TC4钛合金表面激光熔覆Ni60/30%WS2自润滑涂层,研究了不同扫描速度下熔覆层的组织及性能。结果表明,Ni60/30%WS2激光熔覆层均以W为硬质相,Ti、Ni的固溶体为基体。但不同扫描速度下,熔覆层生成的润滑相不同。扫描速度4 mm/s时,TiS为润滑相;扫描速度12 mm/s时,CrS为润滑相。激光熔覆层硬度在1000~1200 HV0.5之间,较基体提高2倍左右,摩擦因数及磨损率较基体都明显降低。  相似文献   

2.
在TC4合金表面激光熔覆Ni60/Ni/MoS_2涂层,探讨Ni/MoS_2添加量对熔覆层质量和显微硬度的影响,以及激光工艺参数对熔覆层质量的影响。研究表明:随熔覆材料中Ni/MoS_2含量的增加,熔覆层形貌从凸起型过渡为平缓型,熔覆层裂纹和气孔等缺陷变多,微观组织均匀性变差。熔覆层显微硬度随Ni/MoS_2含量增加逐渐升高,添加20%Ni/MoS_2熔覆层的显微硬度和Ni60熔覆层的显微硬度相差不大。随扫描速度的提高,钛合金表面激光熔覆层的宽度、高度和基底熔深均减小;不同激光能量密度下,熔覆层的组织具有较大差异。  相似文献   

3.
目的 通过添加铜包覆六方氮化硼(h-BN@Cu)粉末,改善激光熔覆Ni基NbC涂层的性能。方法 采用激光熔覆技术,使用添加不同质量分数铜包覆六方氮化硼的镍基碳化铌复合粉末,在45钢基体表面沉积镍基复合涂层。利用扫描电子显微镜(SEM)和X射线衍射(XRD)设备,研究h-BN@Cu对Ni60/NbC的激光熔覆镍基复合涂层微观结构的影响,利用显微硬度计和布鲁克UMT-2摩擦磨损试验机及白光干涉模块,测量熔覆层的显微硬度、摩擦磨损系数和磨痕宽度。结果 熔覆层中的主相为Ni-Cr-Fe,除此之外还存在FeNi3、CrB、M7C3、NbC、M23C6、Cr2Nb等多种相。研究发现,添加的润滑相h-BN@Cu与硬质相NbC会发生部分分解,Nb原子和B原子进入熔池,与熔池中的Cr原子反应,生成CrB、Cr2Nb等,这些金属间化合物具有硬度高、耐磨性好等特点。当h-BN@Cu的质量分数为10%时,熔覆层的显微硬度为650HV1.0,摩擦系数为0.4,磨痕宽度为0.406 mm。结论 相比于不添加h-BN@Cu的Ni60/NbC熔覆层,添加h-BN@Cu的Ni60/NbC熔覆层的平均硬度略微下降,但熔覆层硬质相分布更加均匀,此时硬度仍为45钢基体硬度的3.1倍,摩擦系数降低约27%,磨痕宽度减小约21%。  相似文献   

4.
38CrMoAl钢表面激光熔覆Ni基合金工艺研究   总被引:1,自引:1,他引:0  
利用正交试验法对38CrMoA1钢表面激光熔覆Ni60合金时激光功率、扫描速度和离焦量等工艺参数进行优化,得到熔覆层硬度和耐磨性能较为优良的参数组合,并研究了激光熔覆工艺参数对熔覆层性能的影响.结果表明,选择激光功率2.0 kW,离焦量40 mm,扫描速度6 mm/s作为35CrMoA1钢表面激光熔覆Ni60合金时的工艺参数,熔覆层硬度可以达到880.5 HV,相对耐磨性为2.26.  相似文献   

5.
采用激光熔覆技术,在钛合金表面制备了TC4-20wt%Ni包B_4C涂层,利用SEM、XRD、EDS对熔覆层的宏观形貌和微观组织进行分析。试验表明,原位生成的Ti C、Ti B、Ti B_2和Ti_2N均匀分布在α-Ti基体中,且在涂层中保留有未熔的B_4C颗粒。随着扫描速度的增加,涂层稀释率变大,未熔的B_4C数量增多,板条状Ti B数量与尺寸减小,细枝状Ti B_2增多。涂层的硬度与摩擦因数都随扫描速度的增大而提高,扫描速度为10 mm/s时,熔覆层的平均硬度最高为851 HV0.3,较基材相比提升了2~3倍,摩擦因数稳定在0.74~0.78;在同等试验条件下,当扫描速度为8 mm/s时,涂层的磨损量仅为基材的25%。  相似文献   

6.
TiC陶瓷相韧性好、润湿性好、热化学稳定性高、耐磨性好,在激光熔覆温度下几乎没有脆性第二相生成,是理想的增强相,但目前对其加入Ni基合金粉末进行激光熔覆的研究较少。在TLF3200TM三维激光焊接机上以不同的扫描速度在45钢表面激光熔覆Ni基TiC复合粉末,采用扫描电镜观察熔覆层形貌,采用硬度计测试熔覆层的硬度,采用磨损试验测试其耐磨性,采用极化曲线分析其耐蚀性,研究了扫描速度对激光熔覆层显微组织和性能的影响。结果表明:不同扫描速度得到的激光熔覆层组织均由熔覆区、界面结合区和基底热影响区组成;当扫描速度为5 mm/s时,熔覆层组织中细小的TiC颗粒均匀、弥散分布于熔覆区和热影响区,熔覆层磨损率最低为0.12 mg/mm2,维钝电流密度最小,为0.008 mA/mm2,钝化区间最大,为0.65 V,耐磨及耐蚀性最佳。  相似文献   

7.
激光熔覆工艺参数对CBN膜层裂纹率的影响   总被引:2,自引:0,他引:2  
在TC11表面激光熔覆制备CBN膜层,通过研究激光工艺参数与裂纹率关系,控制熔覆层裂纹的产生。采用正交试验,并利用ANSYS软件平台对温度梯度进行研究,利用SEM、EDS对熔覆层截面形貌和成分进行分析。结果表明:对于熔覆层宏观裂纹,随着激光能量密度的增大,裂纹率明显下降,熔覆层质量变好,在激光能量密度为6×104 J/cm2送粉率为1 r/s时涂层质量较好;随着扫描速度增大时,裂纹率呈上升趋势,在扫描速度为3 mm/s、送粉率为1 r/s时裂纹率较小;随着送粉率增加,裂纹率先增加后减小,在送粉率为2.25 r/s、激光能量密度为3.4×104 J/cm2达到最大。对于熔覆层微观裂纹,随着激光功率增加,裂纹率先减小后增加,激光功率为1 800 W时,裂纹率达到最低;随着扫描速度增加,裂纹率也是先减小再增加,扫描速度为4 mm/s时,裂纹率达到最低。经过SEM与EDS分析,通过调整激光熔覆工艺参数,控制熔覆过程中温度场的温度梯度,进而控制熔覆层的裂纹率,可以获得形貌与组织成分良好的涂层。  相似文献   

8.
刘亚楠  孙荣禄  牛伟  张天刚 《表面技术》2018,47(12):134-141
目的 研究激光扫描速度对激光熔覆层组织与性能的影响。方法 采用通快TRUMPF Laser TruDisk 4002光纤激光器,在扫描速度分别为300、400、500 mm/min时,制备激光熔覆Ni基增强涂层,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱分析仪(EDS)分析了熔覆层的微观组织和物相组成,利用显微硬度计及摩擦磨损试验机测试了熔覆层的显微硬度和耐磨损性能。结果 熔覆层主要由TiC、TiB2、Ti2Ni及γ-Ni等物相组成。随着扫描速度的增加,Ti811基材烧损程度逐渐减弱,熔覆层宽度W、高度H、基体熔深h及稀释率λ均逐渐减小。当扫描速度为500 mm/min时,熔覆层组织明显细化,平均显微硬度可达920HV0.5,超过基体硬度的2倍。扫描速度为300、400、500 mm/min时,熔覆层的平均摩擦系数分别为0.45、0.40、0.38,平均磨损量为2.1、1.7、1.4 mg。结论 采用激光熔覆技术能够在Ti811表面成功制备Ni基复合增强涂层。选择适当的激光扫描速度可以改善熔覆层显微组织,当激光扫描速度为500 mm/min时,熔覆层晶粒细小,组织分布致密均匀,显微硬度与耐磨损性能显著提高。  相似文献   

9.
目的研究U71Mn钢表面激光熔覆Ni60-25%WC涂层的最佳工艺参数。方法首先通过单道单因素试验初步选取激光功率、送粉量、扫描速度和光斑直径4个工艺参数,然后进行4因素3水平的单道正交试验,以熔覆层的宽度、高度和稀释率作为判断熔覆层质量的指标,做极差分析,最后得到最优工艺参数并分析了熔覆层的显微硬度及显微组织。结果单道单因素试验及单道正交试验得到的工艺参数均为:激光功率1500 W,送粉量4 g/min,扫描速度6 mm/s,光斑直径2.2 mm。通过单道正交试验极差表分析发现,工艺参数对质量指标的影响程度不同,对熔覆层宽度的影响为扫描速度送粉量激光功率光斑直径,对熔覆层高度的影响为送粉量扫描速度光斑直径激光功率,对熔覆层稀释率的影响为送粉量光斑直径扫描速度激光功率,对比发现送粉量是熔覆层的最大影响因子。熔覆层的显微硬度最高可达到1170HV,是基体的3.7倍。结论在U71Mn钢表面激光熔覆Ni60-25%WC涂层,可以制备出光滑且紧密结合的熔覆层,且表面硬度明显提高。  相似文献   

10.
通过在钛合金表面激光熔覆镍基涂层,探讨了扫描速度对熔覆层宏观形貌的影响,激光能量密度对熔覆层微观组织的影响,WS2添加量对熔覆层宏观形貌、成型质量、组织均匀性和显微硬度的影响。结果表明:随扫描速度的提高,钛合金表面激光熔覆层的宽度、高度和基底熔深均减小。随熔覆材料中WS2含量的增加,熔覆层形貌从凸起型过渡为凹陷型,且粉末利用率降低;熔覆层裂纹和气孔等缺陷变多;微观组织均匀性变差。添加WS2的熔覆层显微硬度低于Ni60熔覆层。  相似文献   

11.
为解决熔覆层易开裂、熔覆效率低的问题以及合理地选择工艺参数.进行了激光-感应复合熔覆Ni基WC涂层的实验,定义了激光高速扫描下的极限熔覆状态,研究了激光比能与粉末面密度对熔覆层宏观形貌的影响规律.结果表明,最小激光比能、最大熔覆层厚度、接触角均与最大粉末面密度呈线性关系;激光-感应复合熔覆速度达3000 mm/min,送粉率达82.7 g/min,相对单纯激光熔覆技术的效率提高了近5倍,而且获得的Ni60A+20%WC涂层经检测无裂纹.  相似文献   

12.
在TC4钛合金表面利用激光熔覆Co基合金粉末涂层,利用扫描电镜(SEM)、能谱分析仪(EDS)和洛氏硬度计研究涂层的微观组织及力学性能。结果表明:当扫描速度固定为400 mm/s,激光功率为1.3、1.5、1.7 k W熔覆时,涂层与基体之间都实现了冶金结合。其中,激光功率为1.5 k W时熔覆效果最好,熔覆层内组织均匀致密无气孔和裂纹等缺陷。激光功率为1.3 k W时,熔覆层内出现了裂纹。当激光功率固定为1.5 k W,扫描速度为300、350、400 mm/s时,熔覆层和基体的结合情况良好,熔覆层内组织均匀致密无缺陷。随着激光功率和扫描速度的增大,涂层表面硬度呈减小的趋势,但都高于TC4基体硬度的两倍左右,表明在TC4表面激光熔覆Co基合金粉末涂层可以显著提高其硬度。  相似文献   

13.
董会  郭鹏飞  徐龙  康凯祥 《表面技术》2022,51(5):111-120
目的 研究海水腐蚀环境中热处理温度对高速激光熔覆Ni/316L涂层耐磨性能的提升作用。方法 采用高速激光熔覆设备在Q235钢表面制备Ni/316L涂层,分别在650、700、750、800℃下热处理1.5 h,通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)和能谱仪(EDS)对Ni/316L熔覆层微观组织结构和相组成进行表征,通过硬度测试和模拟海洋环境摩擦磨损试验,分析热处理温度对Ni/316L熔覆层硬度与耐磨性能的影响。结果 Ni/316L熔覆层厚度约为2 mm,过渡层约为50μm。熔覆态涂层晶粒包含枝状晶和等轴晶。随热处理温度升高,涂层等轴晶数量先增加、后减少,第二相含量先升高、后降低,熔覆层硬度先升高、后降低。在750℃时,熔覆层硬度达到最高,约为熔覆态涂层硬度的2.4倍。热处理后的4种熔覆层的摩擦系数约为0.31,稍低于熔覆态涂层摩擦系数(0.33)。熔覆态涂层的磨损率比750℃热处理的涂层约高5倍。5种涂层均以磨粒磨损为主。结论 改变热处理温度可以改变高速激光熔覆Ni/316L涂层的组织结构和第二相的数量,进而影响其硬度与耐磨性,但是热处理温度过高会导致晶粒组化等问题。因...  相似文献   

14.
离焦量对 45# 钢表面激光熔覆镍基碳化钨粉的影响   总被引:1,自引:3,他引:1  
目的研究激光熔覆过程中离焦量对熔覆层成形质量的影响。方法在扫描速度(2 mm/s)和送粉电压(8 V)不变的情况下,通过改变熔覆头与基体间的距离和激光功率,对比分析不同离焦量对熔覆层尺寸、洛氏硬度、界面显微硬度和金相组织的影响,并确定最佳离焦量。结果当离焦量D_L=3,4 mm时,熔覆层表面硬度先逐渐增大后趋于稳定,洛氏硬度高达55~56HRC;当离焦量D_L=5,6 mm时,由于离焦量过大,导致基体与熔覆层冶金结合不牢固,部分粉末颗粒没有充分熔化附着在熔覆层表面,熔覆层质量较差。同一功率下,随着离焦量的增大相对熔覆层宽度会减小;当离焦量D_L=3 mm时,冷却速度最大、熔覆层底部由柱状晶沿着熔体最易散热方向生长明显,在熔覆层上部形成了等轴晶组织。结论激光熔覆时离焦量是不可忽视的工艺参数之一,最终优化工艺参数为:扫描速度2 mm/s,送粉电压8 V,激光功率1200 W,最佳离焦量3 mm。  相似文献   

15.
钛合金表面激光熔覆 h-BN 固体润滑涂层   总被引:6,自引:6,他引:0  
王培  叶源盛 《表面技术》2015,44(8):44-48,75
目的优化钛合金激光熔覆固体润滑涂层的熔覆工艺参数,提高钛合金表面耐磨性能。方法采用Nd∶YAG激光器,分别在高功率和低功率条件下,在TC4钛合金表面制备h-BN固体自润滑涂层。观察分析熔覆陶瓷层的宏观形貌、物相组成、显微组织和硬度,采用摩擦磨损试验仪对熔覆层的摩擦学性能进行研究。结果低激光功率下,熔覆材料上浮流失严重,熔覆层的相成分主要是Ti N,Ti B,Ti B2等硬质相,硬度较高,存在裂纹。高激光功率下,基材的熔化稀释较好地抑制了润滑相h-BN的上浮,减少了溅射损失,发生了包晶反应,生成了单质金属Ti,熔覆层硬度低,但摩擦磨损试验表明,涂层中润滑相h-BN含量的增加使得形成了更好的润滑膜,降低了摩擦系数。结论在输出电流400 A,脉宽5 ms,频率12Hz,扫描速度120 mm/min,搭接率50%~60%的条件下进行激光熔覆,所得熔覆层的表面状态平整,耐摩擦性能最好。  相似文献   

16.
采用同步送粉激光熔覆技术,在Ti811钛合金表面制备了不同CeO_2含量的TC4+Ni45+CeO_2多道搭接激光熔覆层。利用扫描电镜(SEM)观察了不同稀土添加量对熔覆层组织形貌的影响,利用能谱分析仪(EDS)、X射线衍射仪(XRD)分析了涂层的微观组织和相组成,利用显微硬度计测试了涂层的显微硬度。结果表明,在不同CeO_2添加量条件下,熔覆层生成相基本相同,主要包括Ti C、金属间化合物Ti_2Ni、TiB和基底α-Ti。随着CeO_2添加量的增加,熔体对流性增加,反应生成相得到明显细化。当CeO_2添加量为2%和3%时,涂层中生成相分布较为均匀。当涂层中加入CeO_2后,涂层的显微硬度较基底有明显提高,当CeO_2添加量为3%时,涂层的显微硬度相比未添加的CeO_2的涂层有所降低。  相似文献   

17.
热锻模表面激光熔覆金属陶瓷覆层的试验研究   总被引:2,自引:0,他引:2  
为了制备符合锻模使用性能要求的模膛表面强化层,进行了在指定的W6Mo5Cr4V2基体上激光熔覆金属陶瓷Ni60/Ni-Cr-Cr3C2的试验研究.主要研究熔覆材料的成分构成,熔覆时的激光参数及所制备的熔覆层的物相、组织形貌及显微硬度分布.试验结果说明,采用50%:50%的Ni60粉和Ni-Cr-Cr3C2粉做覆层材料,采用激光功率1.7 kW,扫描速度4 mm·s-1,光斑直径为3 mm,预涂厚度为0.6 mm的激光熔覆工艺,可以得到组织细化硬度较高的激光覆层.说明激光熔覆金属陶瓷是制备热锻模膛表面强化层的一种有前途的方法.  相似文献   

18.
目的研究Cr元素含量对TC21钛合金表面激光熔覆Ni-Al涂层组织与性能的影响,改善其表面性能。方法利用激光熔覆技术在TC21钛合金表面制备不同Cr含量的Ni-Al涂层,采用带有能谱仪(EDS)的扫描电子显微镜(SEM)、X射线衍射仪(XRD)对熔覆层的显微组织、物相组成进行分析,采用显微硬度计和材料表面性能综合测试仪测试熔覆层的硬度分布和耐磨性能。结果熔覆层表面质量良好,未添加Cr元素时,熔覆层主要由Ni(Al,Ti)、Ni_2AlTi、Ti Ni等物相组成;添加Cr元素后,熔覆层中有α-Cr沉淀相析出,并且随着Cr元素含量的逐渐提高,Ti Ni、Ni_2AlTi、α-Cr等物相的相对含量逐渐增加。熔覆层主要由Ni(Al,Ti)枝晶组织与其周围呈网状分布的Ti Ni、Ni_2AlTi、α-Cr晶间组织构成。熔覆层的显微硬度均提高到基体的2倍左右,Cr元素对提高Ni-Al涂层显微硬度的影响不大,但能使其显微硬度波动减小,趋于平稳,熔覆层的韧性随着Cr元素含量的增加而不断提高。当Cr元素添加量为20%(原子数分数)时,耐磨性最好,约为基体的2.948倍。结论 Cr元素的添加,有利于熔覆层中α-Cr相的析出和Ti Ni/Ni_2AlTi共晶组织的生成,能有效降低熔覆层的室温脆性,提高塑韧性及耐磨性能。  相似文献   

19.
采用高功率横流CO2激光器,以铁基和镍基合金粉末为熔覆材料,用同步送粉法在灰铸铁基体材料上进行激光熔覆试验,并对熔覆层组织和性能进行比较分析。结果表明,激光熔覆镍基时覆层内的组织较铁基合金熔覆层组织均匀细致;熔覆镍基和铁基粉末合金层与基体结合紧密成冶金结合;结合区的组织晶粒细小,合金碳化物含量高,其硬度也最高。用正交试验法分析激光功率、扫描速度、熔覆层数对熔覆效果、表面硬度的影响规律,获得激光熔覆层表面硬度显著提高;对表面硬度影响最大的因素是扫描速度,其次是激光功率,熔覆层数则影响不大。熔覆Fe35合金粉末综合优化参数为扫描速度300mm/min、激光功率4.0kW、熔覆二层。熔覆Ni20A合金粉末优化参数为扫描速度400mm/min、激光功率4.0kW。  相似文献   

20.
目的确定TC4钛合金激光熔覆的最优工艺参数,研究其热循环特性,分析激光熔覆温度对组织的影响规律。方法采用3D高斯热源,基于Sysweld软件平台,对TC4钛合金激光熔覆Ni60A-50%Cr3C2粉末过程进行数值模拟仿真,研究温度场云图及其热循环特性,模拟计算激光熔覆最高温度、加热速度和冷却速度,以及熔池最大深度和热影响区宽度,进行激光熔覆实验验证,结合熔覆层显微组织扫描电镜(SEM)图像,研究冷却速度对熔覆层组织的影响。结果由仿真可知,激光熔覆工艺参数中的光斑直径和送粉速度主要影响熔覆层的高度和宽度,对温度场分布起主要影响作用的是激光功率和扫描速度。激光功率为500 W,扫描速度为4 mm/s时,熔覆层区域熔化完全,与基体结合良好。激光熔覆最高温度为2700℃,最大加热速度约为2200℃/s,最大冷却速度约为1200℃/s,熔池最大深度在0.33~0.66 mm之间,热影响区宽度约为1.2 mm。模拟与实验得到的熔覆层截面形貌基本一致。不同冷却速度得到的熔覆层组织不同,随着冷却速度的降低,显微组织由短小的胞晶和树枝晶逐步转变为柱状晶、胞状晶和平面晶,最终形成淬火态的针状马氏体。结论最佳工艺参数为:激光功率500 W,扫描速度4 mm/s。冷却速度是影响熔覆层组织的重要因素,仿真模型的正确性及方法的可行性得到了实验验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号