首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
结合传统挤压与扭转变形的特点提出正挤压-扭转复合变形方式,采用有限元软件对其变形方式进行数值模拟。研究扭转角度对坯料变形过程中累积应变的影响,并对经过不同扭转角度变形后坯料的等效应变分布的不均匀程度进行定量分析。根据正挤压-扭转复合变形的模拟结果,设计出较优的模具结构并进行实验研究。结果表明:正挤压-扭转复合变形可以显著提高镁合金变形过程的累积应变,随着扭转角度的增大,累积应变增大,但不均匀程度相对增加,最大等效应变高达3.75。当模具扭转角为40°时,试样可获得较大的等效应变和均匀的等效应变分布。在复合变形后,AZ31镁合金的晶粒尺寸由300μm显著细化至约6μm。  相似文献   

2.
AZ31镁合金连续挤压过程数值模拟   总被引:1,自引:1,他引:0  
采用连续挤压方法可以实现AZ31镁合金变形,变形条件是决定AZ31镁合金连续挤压成形的关键因素.利用DEFORM3D软件,模拟AZ31镁合金在250型连续挤压机上生产Φ7mm杆的成形过程,建立AZ31镁合金线连续挤压的刚粘塑性有限元模型,分析了连续挤压成形过程不同阶段的温度,等效应力应变变化.研究表明,变形金属的等效应力最高值出现在压实轮下方;温度最高值出现在型腔内;等效应变最大值出现在模具入口处.模拟结果对生产中制定合适的工艺和工模具的设计起到指导作用.  相似文献   

3.
用有限元模拟软件Deform-3D对5号AZ31镁合金电池筒反挤压成形过程进行仿真模拟,完成了模具的设计,分析了挤压坯料温度与挤压速度对反挤压成形过程的影响,探讨了电池筒损伤极值、等效应变极值、等效应力极值以及模具温度场中最高温度的变化。结果表明,在相同挤压速度下(145 mm/s),随着挤压坯料温度的升高,电池筒的损伤极值不断增大,等效应变极值先下降后上升,等效应力极值不断下降,模具温度场中最高温度不断升高,并在60℃的挤压坯料温度下,损伤极值最低。在相同挤压温度下,随着冲模挤压速度的升高,损伤极值先增大后减小,等效应变极值不断降低,等效应力极值不断增大,最高温度不断增大,在145 mm/s的挤压速度下,损伤极值最小值。选取不同挤压坯料温度与挤压速度进行正交试验,获得最优的工艺参数,并以此参数进行反挤压试验,获得组织较均匀的5号AZ31镁合金电池筒。  相似文献   

4.
根据AZ31镁合金流动应力-应变曲线建立了材料模型,应用Deform-3D软件对AZ31镁合金薄壁管材反挤压过程进行了有限元模拟,分析了挤压过程中坯料和管材内部温度场、损伤因子及流动速率的分布情况,着重探讨了不同挤压温度、挤压速度和模角对最高温升、等效应力、流动速率及挤压力峰值的影响。结果表明,AZ31镁合金薄壁管材反挤压的最佳工艺参数:挤压温度为310℃、挤压速度为1mm/s、模角为60°。  相似文献   

5.
AZ31镁合金薄壁管挤压成形过程有限元模拟   总被引:1,自引:0,他引:1  
采用Gleeble-1500热-力学模拟试验机进行等温压缩实验所得AZ31镁合金应力--应变数据,建立材料变形的数学模型,拟合出材料温成形应力--应变曲线.应用有限元法模拟AZ31镁合金薄壁管的挤压成形,坯料的成形流变性能按其数学模型施加于MSC-Superform的材料库中,其中着重探讨AZ31镁合金挤压成形过程中,温度、速度、润滑以及模具形状等因素对金属流动的影响,为管类零件挤压成形工艺提供科学的依据.  相似文献   

6.
采用等温挤压成形工艺研究了大塑性变形下变形镁合金AZ31的成形性能,分析了成形过程中变形速率对成形性、成形力和应变的影响。结果表明,AZ31合金在300~350℃等温挤压成形,随变形速率的升高,挤压变形力呈下降的趋势;变形速率为1 mm/s时,应变分布均匀,能够获得最佳的成形质量和力学性能。  相似文献   

7.
AZ80镁合金变形特性及管材挤压数值模拟研究   总被引:1,自引:0,他引:1  
利用Gleeble热模拟机研究了AZ80合金的高温变形特性。结果表明,流变应力取决于变形温度和变形速率。当应变速率一定时,流变应力随变形温度的升高而降低;当温度一定时,流变应力随着应变速率的升高而增大。根据AZ80镁合金真应力-真应变曲线,建立了其流变应力模型。采用刚塑性有限元法对AZ80镁合金管材挤压过程进行热力耦合数值模拟,并分析了高温挤压成形过程中变形力及金属流动规律,着重探讨了变形温度和挤压速度等挤压工艺参数对挤压力、应变场以及应力场的分布及变化情况的影响。模拟的结果为AZ80镁合金管材挤压工艺参数的制定、优化提供了科学依据。  相似文献   

8.
《铸造技术》2017,(7):1666-1669
采用Deform-3D有限元软件,在挤压温度为250~400℃条件下,对AZ31镁合金等径角挤压工艺进行了数值模拟,主要分析塑形成型过程中的挤压载荷、等效应力和等效应变的变化规律。结果表明,AZ31镁合金塑形成型过程中挤压载荷分为3个阶段:无明显变形阶段、快速增长阶段和稳定变形阶段。挤压载荷随着挤压温度的增加显著下降,试样的等效应力分布不均,模具转角处等效应力较大,存在应力集中现象,等效应变逐渐增加,在转角剪切区最大。试样经过ECAP变形后,心部等效应变大,从内向外应变呈减小的趋势,试样上部等效应变较大,下部等效应变相对较小,组织均匀性较好。  相似文献   

9.
AZ31镁合金散热器等温挤压成形金属流动规律研究   总被引:2,自引:0,他引:2  
根据等温压缩实验所得AZ31变形镁合金应力-应变数据,通过回归法得出材料温成形数学模型,应用刚塑性有限元法模拟AZ31变形镁合金散热器等温挤压成形,着重探讨AZ31变形镁合金等温挤压成形过程中,变形力及金属流动规律.根据模拟得到的应力场、应变场、速度场及加载变化等,也可预测变形时产生的缺陷,为该类零件等温挤压成形工艺提供科学的依据.  相似文献   

10.
分析了旋转挤压成形的杯形构件的合理结构参数范围。采用刚塑性有限元法,对AZ80镁合金冲头旋转反挤压成形过程进行了数值模拟,分析了旋转挤压过程的载荷—行程曲线和坯料应变的分布,探讨了旋转挤压速度对成形过程的影响,并将旋转挤压成形技术与传统反挤压成形过程进行了对比研究。结果表明:与传统反挤压成形相比,旋转挤压变形更为剧烈,绕轴旋转速度越大、轴向速度越小,所需极限载荷越小,等效应变越大,变形越均匀。  相似文献   

11.
采用Gleeble-1500热模拟试验机得到AZ80镁合金的流动应力-应变曲线,根据应力-应变曲线求得材料热变形的材料常数,基于刚塑性有限元法,对AZ80镁合金的反挤压过程进行数值模拟。分析挤压过程中的载荷-行程曲线以及坯料内部的等效应力、等效应变分布,并就挤压温度和挤压速度对反挤压过程的影响进行分析。根据模拟结果对筒形件进行反挤压试验,分析成形件的显微组织及力学性能。模拟结果表明,镁合金深孔筒形件的最佳反挤压温度为360℃,反挤压速度为5 mm·s-1。采用此工艺制备的筒形件表面质量良好,组织得到明显细化,且其抗拉强度、屈服强度与伸长率分别为324 MPa,216 MPa和11%。  相似文献   

12.
基于Deform-3D与AZ31镁合金材料模型对1号镁合金电池筒的反挤压成形过程进行数值模拟,完成模具设计及各工艺参数下反挤压成形过程的对比优化。结果表明:在相同挤压速度下,随挤压温度升高,等效应力峰值不断降低,等效应变峰值不断升高,温度场向高温区推进,并在280℃时,损伤值降至最低,说明在该温度下AZ31镁合金反挤压过程的破损率最小;另外,在280℃下,随着挤压速度的提高,等效应力场峰值不断减小,等效应变场峰值增大,温度场峰值向高温区推进,并在12 mm·s-1的挤压速度下达到损伤极值最小值。根据优化工艺进行反挤压成形试验验证,生产出了合格的产,品且筒壁组织均匀细化。  相似文献   

13.
针对高强度镁合金管材挤压过程中坯料成形问题,设计了四套具有不同焊合室高度的管材挤压模具,对AZ91镁合金管材分流模挤压工艺过程进行了有限元分析和挤压试验。结果表明,变形程度指标等效应变标准方差由高到低顺序为:H=9mm>H=12mm>H=18mm>H=15mm,其中焊合室高度为15mm时变形最均匀;AZ91镁合金经分流模挤压,粗大的树枝晶及网状第二相β-Mg_(17)Al_(12)被击碎重溶,并且发生再结晶,组织和性能得到明显改善。  相似文献   

14.
提出采用三辊斜轧穿孔方法制备镁合金无缝管,基于AZ31镁合金塑性变形特点和斜轧穿孔成形原理分析,建立AZ31镁合金的力学模型,设定AZ31镁合金斜轧穿孔的工艺和模具参数。利用Deform-3D有限元分析软件对AZ31镁合金在300~400℃温度范围内进行斜轧穿孔数值模拟,得到各个成形阶段坯料的等效应力分布和金属流动速度矢量图。模拟结果表明在350℃、0.01 s-1变形条件下,AZ31镁合金斜轧穿孔保持稳定轧制。根据模拟结果进行试验验证,结果表明在此工艺条件下斜轧穿孔后的AZ31镁合金管力学性能良好,验证了斜轧穿孔制备镁合金无缝管的可行性和有效性,为镁合金无缝管新的生产方法提供理论依据。  相似文献   

15.
研究了镁合金的变形温度、变形程度对塑性成形的影响,介绍了实验用的模具和设备,从润滑剂的选用、挤压速度、挤压温度、坯料加热几方面介绍了镁合金的挤压工艺,得出镁合金在等温复合挤压条件下成形性能较好的结论。制定的AZ31镁合金挤压工艺及工艺参数是合理的,对于实际生产有参考作用。  相似文献   

16.
根据相似性原理研制AZ31镁合金静液挤压实验模拟成形装置,在630kN液压机上以彩色塑性胶泥为模拟材料进行了静液挤压实验模拟,证明AZ31镁合金静液挤压成形工艺的可行性。应用Deform-3D有限元分析软件对直径3mm的镁合金丝进行了静液挤压成形工艺仿真研究,得到350℃镁合金静液挤压时温度场分布、应力应变分布及挤压力等技术数据,为AZ31镁合金静液挤压成形工艺及模具设计提供了理论依据。  相似文献   

17.
镁合金按制造工艺可分为两大类:变形镁合金和铸造镁合金。AZ31镁合金属于变形镁合金,具有良好的机械性能,主要用于汽车零件、机件壳罩和通信设备等。通过对AZ31镁合金热挤压变形工艺的研究,得出热挤压工艺可以改善镁合金塑性变形的均匀性。对不同的挤压比、不同的变形温度、不同的初始坯料状态进行对比,系统分析了挤压变形工艺参数对挤压过程及AZ31镁合金组织和性能的影响,揭示变形材料微观组织和性能间的内在联系,为进一步制备高性能的变形镁合金奠定基础。  相似文献   

18.
提出了基于热模拟仪的镁合金挤压-一次剪切(extrusion-shear)二步复合制备工艺(简称ES工艺),设计并制造了适合于热模拟仪Gleeble1500D的ES热物理模拟装置,进行了热模拟实验,建立了基于DEFORM软件的ES挤压有限元数值模型,并进行了有限元模拟。研究了坯料变形过程的应变率、挤压力、应变-应力等物理量。从ES热物理模拟和数值模拟过程的挤压力、应变-应力曲线的特点,发现ES工艺中镁合金发生了特有的动态再结晶过程,具有明显的两个动态再结晶阶段,被称为"双级动态再结晶"。镁合金坯料的等效应变率在正挤压阶段,累积应变的值较小,发生了少量的动态再结晶,在经过一次剪切后等效应变率急速上升,发生了第二阶段的动态再结晶,镁合金坯料的微观组织经过挤压-剪切逐步细化。  相似文献   

19.
AZ31镁合金等通道转角挤压变形均匀性有限元分析   总被引:2,自引:0,他引:2  
以AZ31镁合金为研究对象,通过对不同模具外角ECAP变形过程的有限元模拟,研究不同模具外角下AZ31镁合金ECAP变形的等效应变分布.利用微观组织观察以及硬度测试,分析等效应变分布对微观组织及力学性能影响.结果表明:当模具外角ψ为20.时,工件可以获得均匀的等效应变分布.AZ31镁合金经过ECAP挤压后,微观组织显著细化,力学性能明显改善,但平均晶粒尺寸及微观维氏硬度在工件横截面上分布不均匀,等效应变分布的不均匀性是导致材料微观组织和力学性能不均匀的主要因素之一.  相似文献   

20.
为研究镁合金圆管挤压成形薄壁中空方管的可行性及其性能,本文通过挤压-剪切复合成形工艺将AZ31镁合金圆管坯料直接制备成厚度为2 mm的薄壁中空方形管材。结合DEFORM-3D软件对不同温度下镁合金方管成形过程中成形载荷、挤压速度、等效应变等进行了数值模拟。结果表明:温度的大小影响成形载荷的分布,合适的成形速度与温度有利于镁合金方管的成形。通过挤压-剪切复合工艺可直接一道次成形薄壁中空方管,且成形方管的晶粒尺寸得到有效细化;在400℃下成形方管的屈服强度约为230MPa,伸长率约为20%,断裂方式为准解理断裂;在动态再结晶和较大的剪切作用下,成形方管的基面织构分散程度较高,强度明显弱化,其综合性能得到提高。在挤压-剪切复合成形过程中,可以通过降低变形速度和提高变形温度来获得良好性能的镁合金方管。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号