首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用不同的退火工艺对热轧后的TC4板材进行热处理,对比分析了退火温度和退火时间对材料组织和性能的影响。结果表明,随着退火温度的升高,TC4钛合金板材的晶粒等轴化程度提高,抗拉强度和伸长率随温度升高变化不大,但是屈服强度下降明显,同时硬度有较大幅度的提高。温度高于900 ℃后,组织类型由等轴组织向双态组织转变。900 ℃保温4 h,组织中的晶粒迅速长大,延长保温时间可以提升TC4钛合金板材的塑性,对强度影响不大。950 ℃条件下延长保温时间,材料的硬度大幅度提高;低于900 ℃时延长保温时间,材料硬度的提高幅度较小。  相似文献   

2.
研究了不同退火态的TC2钛合金板材不同方向取样拉伸试验的力学性能,分析了各向异性对退火态TC2板材力学性能的影响规律。结果表明:TC2钛合金板材存在明显的各向异性,对比三个不同方向可知在0°方向上的抗拉强度最大,伸长率则为最小,45°方向强度最低;不同退火态TC2板材力学性能有差异,随退火温度的升高,板材不同拉伸方向的抗拉强度和屈服强度均有不同程度的降低;随退火温度的升高TC2板材的各向异性表现不同,退火温度对板材各向异性有一定程度的影响,850℃时板材各向异性较好,强度与塑性匹配较好。  相似文献   

3.
通过调整SP700钛合金板材的热处理制度,获得了不同组织形态的SP700钛合金板材,研究了不同组织形态对SP700钛合金板材的力学性能、断裂韧性等性能的影响。结果表明,随着退火温度的升高,SP700钛合金板材的显微组织依次为等轴组织、双态组织、片层组织;板材的横纵向室温抗拉强度和屈服强度升高,400℃高温抗拉强度升高,断裂韧性升高;当退火温度从770℃升高到870℃,室温伸长率和高温伸长率变化不大,当退火温度从870℃升高到930℃时,伸长率迅速降低;双态组织具有良好的综合力学性能。试样断口的SEM图表明:770℃和870℃退火的试样为延性断裂断口,930℃退火的试样为脆性断裂断口。  相似文献   

4.
研究了退火温度、保温时间、退火方式及冷却方式等热处理制度对TC4薄板室温力学性能和显微组织的影响。结果表明,在单片式退火方式下,温度从720℃升高到820℃时,板材的抗拉强度和屈服强度先降低后升高,但其伸长率先升高后降低,退火温度为780~800℃时板材的强度和塑性得到了良好的匹配;当保温时间从30 min延长到120 min时,板材的抗拉强度变化不明显,屈服强度显著下降,但保温时间超过60 min后屈服强度趋于定值。随退火温度的升高和保温时间的延长,初生α和β转变组织的晶粒尺寸都增大,且β转变组织的比例增大。采用真空垛式退火+炉冷方式,退火温度为780℃、保温时间为7 h时板材可获得良好的综合力学性能。  相似文献   

5.
为提高低成本TC4LCA钛合金板材的强度和冲击性能,选取不同退火温度对典型规格板材进行热处理,研究了其显微组织和力学性能的变化规律,分析了显微组织对强度和冲击性能的影响。结果表明,随着退火温度的升高,TC4LCA钛合金中的长条状初生α相转变为等轴状,β转变组织中析出针状或片状次生α相;退火温度越高,长条状初生α相含量减少,等轴化倾向明显,直至发生粗化;针状或片状次生α相长大。合金的强度先增大后减小、断后伸长率略有降低,冲击吸收能量则呈增大趋势。综合考虑,在800~880 ℃范围进行退火可使TC4LCA钛合金板材获得强度、塑韧性的最佳匹配。  相似文献   

6.
采用三火次热轧工艺制备出厚度为6.0mm的TC25钛合金板材,研究了退火温度对TC25钛合金板材显微组织、室温力学性能和高温力学性能的影响。结果表明:在760~840℃范围内,随着退火温度的升高,TC25钛合金板材热加工形成的等轴组织中初生α相长大;当退火温度升高至880℃时,显微组织由等轴组织向双态组织转变;温度进一步升高至920℃时,呈现双态组织;当退火温度达到960℃时,双态组织中的初生α相含量明显减少,次生α相含量显著增多。双态组织的TC25钛合金板材相比等轴组织的TC25钛合金板材具有更好的室温力学性能和高温力学性能。TC25钛合金板材在920~960℃退火时可获得双态组织,且具有良好的室温和高温拉伸性能。  相似文献   

7.
选取4种不同厚度的TC4钛合金轧制板材,利用金相显微镜以及力学性能试验,对其进行金相组织和力学性能研究。结果表明:经轧制及退火后的TC4钛合金板材的组织为α相与残余β相组成的混合组织,α相的形貌呈现出线条状、等轴状以及细小团状等特征;TC4钛合金板材强度总体呈现出随着厚度的增加先降低再趋于稳定的趋势,而塑性呈现出先升高再趋于稳定的趋势;当厚度为0.8 mm时,TC4钛合金板材的强度最大,抗拉强度为1075 MPa、屈服强度为1027 MPa,且4种规格TC4钛合金板材经轧制退火后沿RD与TD方向的强度与塑性均有一定差值;不同规格TC4钛合金板材拉伸后的微观断口形貌均以韧窝为主,其中厚度为0.8 mm的TC4钛合金板材沿TD方向的断口形貌中除具有韧窝形貌外,还具有一定数量的小平面,韧窝内部存在大量、特别细小的微裂纹。  相似文献   

8.
研究了低成本TC4钛合金板材在变形及退火过程中组织和性能的变化规律。结果表明,板坯经轧制变形后,粗大的铸态枝晶组织被破碎,形成了等轴或长条状α+β转变组织。板材退火后,其组织更加均匀,且随着退火温度升高,板材中析出片状次生α相,初生α相的含量减少,并逐渐趋于等轴化。随变形进行,板材的室温拉伸强度和塑性呈增大趋势;退火温度升高,板材的抗拉强度先增大,至820 ℃时达到最大值,之后逐渐减小,规定塑性延伸强度和断面收缩率总体上呈下降趋势,而伸长率则变化不大。经(750~820)℃×1 h+AC退火处理后的板材,具有较好的强度与塑性的匹配。  相似文献   

9.
采用光学显微镜和室温拉伸实验机研究退火温度对SP-700钛合金板材显微组织和力学性能的影响。结果表明:退火温度低于760℃时,显微组织没有显著变化;退火温度为780℃时,显微组织由等轴状以及条状α相和β转变组织组成;退火温度为800~840℃时,显微组织由等轴α相和β转变组织构成;当退火温度升高至900℃时,显微组织由粗大的β相转变组织组成。室温拉伸实验表明:退火温度低于800℃时,抗拉强度变化不大,屈服强度和伸长率逐渐升高;当退火温度为800~840℃时,抗拉强度和屈服强度逐渐升高,伸长率逐渐下降;在740~820℃退火,纵横向抗拉强度和屈服强度的差异随着退火温度的升高而减小,纵横向伸长率差异先减小后增大。  相似文献   

10.
以海绵钛和电解钛作为熔炼TC4钛合金的原材料,采用工业化电子束冷床炉(EB炉)熔炼为扁锭并直接进行热轧,随后进行固溶时效处理,研究不同原材料铸锭和固溶时效处理工艺对TC4钛合金板材微观组织与性能的影响规律。结果表明:海绵钛TC4和电解钛TC4钛合金的α →β转变都是一个吸热过程,电解钛TC4钛合金α →β转变温度明显高于海绵钛TC4钛合金。海绵钛TC4钛合金在超过相变点温度进行固溶时效处理后,其组织为魏氏组织,其余固溶时效条件下的组织皆为双态组织。随固溶温度的升高,海绵钛TC4钛合金板材的抗拉强度先增加后降低,延伸率持续降低,而电解钛TC4钛合金板材的抗拉强度随固溶温度的升高而增加,延伸率一直降低。二者均在890℃保温30min固溶与550℃保温3h时效后获得最佳的综合力学性能。与海绵钛TC4钛合金板材相比,电解钛TC4钛合金板材在经过固溶时效处理后,材料的强度、硬度提升更为显著。  相似文献   

11.
利用高温拉伸实验、显微硬度及金相组织实验,研究了退火温度对Zr-4合金板材硬度和高温拉伸性能的影响。结果表明:随着退火温度的升高,Zr-4合金板材各方向的硬度逐步降低,各方向的维氏硬度存在一定的差异。在(500~540)℃/20 min的退火温度范围内,随温度升高,Zr-4合金板材的屈服强度和抗拉强度基本无变化,而伸长率略有升高。该区间为Zr-4合金板材的消应力区间。在(540~560)℃/20 min的退火温度区间内,Zr-4合金板材的屈服强度和抗拉强度直线下降,而伸长率陡然升高,这个区间为Zr-4板材的敏感区间。在(500~560)℃/20 min的退火温度范围内,Zr-4合金板材的金相形貌为加工态组织。  相似文献   

12.
采用EB一次熔炼制备的TC4合金扁锭直接进行轧制,对不同轧制火次板材热轧态及退火态显微组织与力学性能进行了研究。结果表明:TC4合金扁锭经过1~3火次直接轧制,粗大铸态组织不断破碎,等轴α相含量逐渐增加,尺寸不断减小,各火次板材力学性能均满足标准要求。随着退火温度增加,各火次成品板材抗拉强度和屈服强度呈下降趋势,伸长率先增加后减小,经850℃退火后TC4合金板材可以获得最佳的强塑性匹配。EB一次熔炼扁锭直轧TC4合金板材工业化批量生产中退火温度推荐使用700~850℃,显微组织与力学性能可以达到锻坯制备的板材水平。  相似文献   

13.
采用EB炉一次熔炼TC4合金扁锭作为直轧坯料,在4200 mm宽厚板轧机上成功制备出规格46 mm×2650 mm×8700 mm的低成本TC4合金宽厚板,研究了退火温度对低成本TC4合金板材显微组织和力学性能的影响。结果表明:EB熔炼TC4合金扁锭经过两火换向轧制,粗大铸态组织得到充分破碎,热轧态TC4合金板材显微组织中等轴α或条状α含量较高,横纵向室温拉伸性能差异小,横向室温冲击吸收能量小于纵向,横纵向心部强度均高于表层。TC4合金板材经750~900 ℃退火,横纵截面为等轴组织,经950 ℃退火,横纵截面为双态组织,经980 ℃退火,横截面为双态组织,纵截面为魏氏组织。随着退火温度升高,TC4合金板材抗拉强度和规定塑性延伸强度呈下降趋势,伸长率基本不变,室温冲击吸收能量先升高后降低,900 ℃退火后,强度、伸长率和冲击吸收能量达到最佳匹配。  相似文献   

14.
在不同温度和时间下对TC18钛合金进行真空去应力退火处理,研究TC18钛合金真空去应力退火前后力学性能及残余应力的变化规律,观察去应力退火后的金相组织和拉伸断口形貌。结果表明:经真空去应力退火后,TC18钛合金的抗拉强度和屈服强度降低,冲击韧性、断裂韧性、伸长率和断面收缩率提高;残余应力消除效果显著;随着退火温度的升高,合金显微组织呈现规律性变化;当温度达到650℃以上时,α相明显减少,亚稳定β相显著增加,导致其强度下降,与力学性能测试结果相吻合;合金塑性提高,与断口形貌分析一致;最后,得到TC18钛合金的真空去应力退火制度为600~650℃和1~4h。  相似文献   

15.
通过超声振动辅助拉伸试验,研究了超声振动的频率、振幅及间歇振动方式等参数对TC1钛合金板材应力与应变、屈服强度、抗拉强度及延伸率等拉伸性能指标的影响。通过拉伸试件的组织和性能分析,研究了超声振动参数对TC1板材金相组织、断口形貌及维氏硬度的影响。结果表明,TC1钛合金板材拉伸过程中叠加一定频率、振幅的超声振动可以明显降低材料的屈服强度和抗拉强度,并且在一定工艺参数条件下还可以较大幅度提高材料的延伸率,而且对其组织和性能影响较小。  相似文献   

16.
通过超声振动辅助拉伸试验,研究了超声振动的频率、振幅及间歇振动方式等参数对TC1钛合金板材应力与应变、屈服强度、抗拉强度及延伸率等拉伸性能指标的影响。通过拉伸试件的组织和性能分析,研究了超声振动参数对TC1板材金相组织、断口形貌及维氏硬度的影响。研究结果表明,TC1钛合金板材拉伸过程中叠加一定频率、振幅的超声振动可以明显降低材料的屈服强度和抗拉强度,并且在一定工艺参数条件下还可以较大幅度提高材料的延伸率,而且对其组织和性能影响较小。  相似文献   

17.
针对TC4钛合金板材轧制过程中产生的各向异性问题,在温热条件下通过与轧制方向呈不同角度拉伸试件的有、无超声振动辅助的拉伸实验,分析了超声振动对TC4钛合金板材的屈服强度、断后伸长率及厚向异性系数的影响规律,得到了有助于提高TC4板材成形性能及有效抑制各向异性的超声振动工艺参数;通过对拉伸试件金相组织和断口形貌的分析,得到了超声振动对TC4钛合金板材微观组织和性能的影响。结果表明,TC4钛合金板材在温度400~600℃范围内拉伸时,施加频率为20 k Hz、振幅为10μm的超声振动可以提高材料变形能力,还可以有效抑制板材的各向异性,同时对材料微观组织也不会造成较大影响。  相似文献   

18.
研究了冷轧变形及退火温度对TC4钛合金管组织和性能的影响。结果表明:变形和退火对TC4钛合金管冷轧性能影响很大,当变形为36%时,冷轧管的综合性能较好;当变形达到46%时,冷轧管出现连续月牙状缺陷和裂纹。随着退火温度的升高,管材的强度先下降后升高,塑性先升高后下降。当退火温度为850℃时,管材的强度最低,但塑性最高。最适宜管材冷轧的退火温度为850℃。此条件下,屈服强度810MPa,伸长率22%。  相似文献   

19.
研究了TC4钛合金棒材经650和700℃固溶处理及时效处理后的组织和性能变化。结果表明:对热加工态的TC4钛合金进行650℃的固溶热处理,材料的显微组织和拉伸性能变化不大。经过700℃固溶热处理,TC4钛合金棒材强度明显降低,屈服强度相对于热加工态降低77 MPa,且屈/强比明显低于普通退火。时效热处理后,合金的强度显著提高,400℃时效后抗拉强度达到1020 MPa,相对于热加工态提高53 MPa。显微组织分析表明,热加工后的TC4棒材显微组织由初生α相、次生α相以及残余β相组成。热处理过程中,残余β相中针状α相的溶解与重新析出是影响合金拉伸性能变化的主要原因。  相似文献   

20.
基于"1+4"热连轧生产线和2800 mm冷轧生产线,采用不同工艺线路制备了5083-O铝合金板材,研究了不同制备工艺对板材组织性能的影响。结果表明:不同工艺路线生产的成品板材均随退火温度升高,抗拉强度、屈服强度减小,深冲性能提高。采用中间退火后,最终板材晶粒尺寸较大,更符合深冲加工要求。试验与生产的性能具有差异性,依据生产数据优化退火温度355℃保温3 h所得板材性能:抗拉强度275 MPa、屈服强度126 MPa、伸长率27%、加工硬化指数n值0.24、变形比r值0.72、制耳率0.8%、杯突值9.15 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号