首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以汽车发动机气门Ti60合金铸件为研究对象,通过Gleeble-3800试验机下的等温压缩试验,研究了汽车发动机气门Ti60合金在960~1110℃和应变率0.001~10.0s~(-1)下的应力-应变特性,探究合金在高温下的变形特性。结果表明,合金的流变应力随应变率的增大而增大,而随温度的升高而减小;合金的α+β相区比于β相区,其流动软化现象更明显;在α+β相区,合金流动软化是由薄片状的α组织球化和组织的高温变形引起,而在β相区,流动软化是由动态回复和再结晶引起。  相似文献   

2.
在变形温度为920~1 100℃、应变速率为0.001~70.0s~(-1)条件下对Ti60合金进行了等温恒应变速率压缩试验,分析了合金的流动行为和塑性变形机制。结果表明,Ti60合金的流动应力对变形温度和应变速率均较敏感。在α+β两相区,随变形温度的升高,α相体积分数逐渐减少,片状组织球化率增高;在变形温度较低、应变速率较高时,易发生局部流动现象。在β单相区,应变速率较低时,β相易发生动态再结晶;应变速率较高时,易造成机械失稳。  相似文献   

3.
采用热压缩试验研究置氢量0.22wt%TC21钛合金粉末烧结材料在温度850℃~1000℃和应变速率0.001s-1~0.10 s-1范围内的流变行为和组织演变,分析了该合金烧结材料在试验参数范围内变形的应力-应变曲线特征。动力学分析获得置氢TC21合金粉末烧结材料高温压缩变形的应力指数和变形激活能分别为3.32kJ/mol和442.74kJ/mol,表明置氢TC21合金粉末制品在高温变形过程中均发生了动态再结晶。组织观察发现,在β相区变形时,β晶粒随金属流动方向明显被拉长、变形;在α+β相区变形时,β相的组织变化基本同其在β相区变形时一样,只是β相再结晶过程加剧;在α相区变形时,原始的的片状和等轴状组织中α相组织发生再结晶,初生的α相含量逐渐减少。平面应变状态下发生动态再结晶的临界变形量大于均匀单向压缩状态下的临界变形量。  相似文献   

4.
在变形温度920~1040℃、应变速率0.001~70.0 s~(-1)条件下,采用Thermecmastor-Z热模拟试验机研究Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd合金在α+β两相区变形时的流动行为和塑性变形机制,得到优化的工艺参数范围。结果表明:该合金在α+β两相区变形时的流动应力对变形温度和应变速率均较敏感,变形温度较低时(920、950和980℃),流动应力曲线呈流动软化特征,变形温度较高时(1010和1040℃)呈稳态流动特征。失稳变形工艺参数范围为(920~930℃、0.2~70 s~(-1))和(1000~1040℃、1~70 s~(-1))范围,该区域易产生局部流动和机械失稳。综合加工图及微观组织观察结果,优化出的Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd合金α+β两相区变形时的工艺参数范围为(1000~1030℃、0.001~0.1 s~(-1))及(920~935℃、0.001~0.003 s~(-1)),其塑性变形机制为超塑性成形。  相似文献   

5.
使用Gleeble-3800热模拟试验机在温度为800~1000℃、应变速率为0.01~10 s~(-1)、变形程度为70%的条件下对锻态β-CEZ钛合金进行热模拟试验。利用试验数据及Prasad判据绘制了真应力-真应变曲线和加工图,研究了该合金在α+β两相区和β单相区的高温变形行为、变形失稳现象和变形机制。结果表明:本实验条件下β-CEZ钛合金表现出动态回复和动态再结晶2种软化机制,在α+β两相区流动应力达到峰值后随应变的增大而缓慢下降,在β单相区流动应力达到峰值后发生不连续屈服现象快速下降一段后趋于稳定;功率耗散率η出现极大值的区域在α+β两相区为850~890℃/0.01~0.05 s~(-1),是片层α相球化的区域;在β单相区为940~980℃/0.2~0.6 s~(-1),是动态再结晶区域;流动失稳区为800~850℃/0.1~10 s~(-1),850~900℃/0.1~5 s~(-1),900~1000℃/1~10 s~(-1),失稳现象在α+β两相区表现为绝热剪切带,在β单相区表现为不均匀变形。  相似文献   

6.
基于显微组织表征和等温热模拟压缩试验,研究TC17合金在α+β两相区变形时的显微组织演变及其对流动应力的影响。研究表明:当变形温度为820和850°C时,随着应变的增加,α相的球化率略微增加;随着变形温度的升高,α相的球化率略微增加,但是α相的体积分数明显减小。当变形温度为780°C、应变速率为1 s~(-1)时,流动应力呈减小趋势;当应变为1.2时,由于位错湮没和α片层转动,流动应力未达到稳定状态。当变形温度为820和850°C、应变速率为1 s~(-1)、应变大于0.8时,由于加工硬化和动态软化的平衡作用,流动应力呈稳定状态。合金动态软化归因于α片层转动、动态回复和轻微的球化。  相似文献   

7.
温度和应变速率对Ti-1023合金等温压缩行为的影响   总被引:2,自引:0,他引:2  
在(α+β)两相区对Ti-1023合金进行等温压缩试验,实测高温流动应力曲线,讨论流动应力及显微组织随温度及应变速率的变化规律,实验结果表明,Ti-1023合金的流动应力对应变速率非常敏感;变形温度对流动应力的影响程度与应变速率大小有关,在ε=1.0s-1的较快速变形时,当温度由760℃提高到800℃时,流动应力值下降约40MPa,而在ε=1.6×10-4s-1的慢速变形时,流动应力值仅下降10MPa;显微组织观察结果表明,在相同温度下较快速变形时(ε=1.0s-1),所得显微组织比较细小、均匀,而慢速变形时(ε=1.6×10-4s-1),初生α相及组织比较粗大,亚β晶界也比较明显。因此,在保证锻件良好成形的前提下,Ti-1023合金在等温锻造时可采用适当大的应变速率。  相似文献   

8.
在Gleeble-1500热模拟机上对Ti-5Al-5Mo-5V-1Cr-1Fe合金进行高温热压缩实验,研究该合金在变形温度为750~900℃、应变速率为0.001~1 s 1条件下的流变应力行为。利用光学显微镜分析合金在不同变形条件下的组织演化规律。结果表明:合金的流变应力随着应变速率的增大和变形温度的降低而增大;流变应力随着应变的增加而增大,出现峰值后逐渐趋于平稳;变形过程中的流变应力可用Arrhenius双曲正弦本构关系来描述,平均变形激活能为454.2 kJ/mol;各种变形条件均可细化原始晶粒尺寸。随着温度的升高和应变速率的降低,合金的主要软化机制由动态回复逐渐变为动态再结晶;在(α+β)相区变形(750~850℃)时,α相对β晶粒的动态再结晶的发生起到阻碍作用。  相似文献   

9.
通过对低成本Ti-6Al-2.5V-1.5Fe-0.15O合金热模拟压缩试验,得到了合金在不同高温变形条件下的真应力-应变曲线。结果表明,在β单相区应力-应变曲线呈现动态回复特征,在α+β两相区呈现典型动态再结晶曲线特征。变形组织由α相以及少量的β相构成,层片α相发生球化,随着变形温度升高,球化率降低,再结晶晶粒长大。在低应变速率变形时,流变应力软化机制以α相动态球化为主,高应变速率变形时除了球化外,片状α相周围有细小的再结晶晶粒形成。  相似文献   

10.
对空冷态TC11钛合金在温度750~1100℃、应变速率0.001~10.0 s-1范围内进行等温压缩实验,利用流动应力-应变曲线和加工图研究了该合金在α+β两相区和β单相区的高温流变行为、流变失稳现象及变形机制。结果表明,在α+β两相区,流动应力超过峰值后在低温区随应变的增大持续下降,在中、高温区先下降最后趋于接近稳定的应力值;在β单相区,流动应力随应变的增大略有下降然后逐渐趋于稳定。在加工图上,α+β两相区η值较高的范围大致为750~900℃、0.001~0.006 s-1和900~1000℃、0.001~0.02 s-1,分别是α片层的球化起作用和α片层的球化及α+β-β相变同时起作用的区域;β单相区η值较高的区域大致为1000~1100℃、0.003~0.3 s-1,是动态再结晶起作用的区域。这些区域均是良好的加工区域。流变失稳区为750~875℃、0.006~10.0 s-1,875~975℃、0.03~10.0 s-1和975~1100℃、1.0~10.0 s-1,失稳现象表现为宏观剪切、绝热剪切带和β晶粒的不均匀变形。  相似文献   

11.
使用Gleeble-3800热模拟机对Ti6246钛合金进行了等温热压缩试验,研究了变形温度、应变速率以及变形程度对合金显微组织的影响。结果表明:Ti6246合金经不同相区变形时,显微组织对热变形参数敏感性不同。变形温度对两相区变形后初生α相含量,β相区变形后β晶粒尺寸、数量的影响较为显著;应变速率则对两相区变形后初生α相的形态、β相区变形后β晶粒的取向和晶界再结晶有较大影响,且在低温,大应变速率时,观察到合金局部塑性流动现象;随着变形程度的增大,两相区变形后拉长的初生α相发生破断、球化,β相区变形后粗化的β晶粒呈现等轴形态。  相似文献   

12.
Ti-1023合金超塑性压缩时的流动应力及显微组织   总被引:5,自引:0,他引:5  
在α+β两相区和β单相区对Ti-1023合金进行了恒应变速率等温超塑性压缩试验,实测得到了一组流动应力-应变曲线。实验结果表明:应变速率对Ti-1023合金的流动应力有显著影响,变形温度对流动应力的影响程度与应变速率大小密切相关;较低温度快速压缩时易得到均匀细小的等轴α相组织,慢速压缩时组织有一定粗化。较佳超塑性压缩温度为760℃~740℃,应变速率可根据锻件成形、组织性能及生产率的需要在一定范围内选取。  相似文献   

13.
采用Gleeble 3500热模拟实验机和D/MAX-2500/PC型X射线衍射仪研究了热变形参数对47Zr-45Ti-5Al-3V合金β→α相转变的影响。结果表明,在850℃固溶处理后,该合金发生完全再结晶,再结晶晶粒尺寸为224μm,合金的组织由单一β相组成。在α+β两相区热变形过程中,该合金将发生β→α相的转变,其相变行为依赖于应变速率和变形温度。在低应变速率变形时,该合金发生了β→α相的转变;而在高应变速率变形时,该合金发生α→β相转变。在低温高应变速率变形时,该合金中析出的α相为针状。随变形温度的升高和应变速率的降低,针状α相发生球化,而且球状α相的体积分数逐渐增加。当变形温度为600℃和应变速率为10~(-3)s~(-1)时,针状α相完全球化。  相似文献   

14.
热压参数对TA15合金流动应力及显微组织的影响   总被引:1,自引:0,他引:1  
在α+β两相区和β单相区对TA15合金进行恒应变速率等温压缩试验,实测得到了一组流动应力应变曲线,并对流动应力及压缩后的显微组织变化规律进行分析。结果表明:应变速率对TA15合金的流动应力有显著影响,变形温度对流动应力的影响程度与应变速率大小密切相关;较低温度快速压缩时易得到均匀细小等轴α相组织,慢速压缩时组织有一定的粗化。较佳等温压缩温度为900℃~980℃,应变速率可根据锻件成形、组织性能及生产率的需要在一定范围内选取,宜采用适当大的应变速率。  相似文献   

15.
采用Gleeble-3800热模拟压缩试验机研究了高氧TC4钛合金在温度为990~1 030 ℃、应变速率为0.01~1.0 s-1、变形量为60%时的变形行为及微观组织特征,并构建了该合金的本构方程。结果表明,高氧TC4钛合金在β单相区变形时随着应变速率的增加和变形温度的降低,其流动应力显著增加,该合金在β相区的变形激活能为141 kJ/mol。在990~1 030 ℃加热温度下,原始β晶粒尺寸在250~255 μm范围内,晶粒尺寸对温度不敏感。随着应变速率的增大,原始β晶粒沿着垂直于压缩轴方向被拉长,在被拉长的原始β晶界上可观察到β再结晶晶粒。  相似文献   

16.
通过原位自生反应热压法制备出TiB晶须增强Ti6Al4V(TC4)合金基复合材料(TiBw/Ti64)。通过热压缩实验研究这种新型复合材料的高温变形行为,变形温度区间为900~1100°C,变形应变速率区间为0.001~10s1。结果显示,该复合材料的流变应力随变形温度的升高与应变速率的降低而降低。当应变速率达到10s1时,出现了非连续屈服与流变失稳现象,特别是在β相区变形时,这种现象更加明显。根据应力—应变曲线上获得的峰值流变应力,分别获得了α+β双相区与单一β相区的流变应力方程。根据流变应力方程,获得了α+β双相区塑性变形激活能为822.3kJ/mol,单一β相区塑性变形激活能为209.4kJ/mol。增强体网状组织结构与基体组织结构变形形态较大程度上取决于变形区域与变形参数。  相似文献   

17.
李妮  赵飞  叶萃  李军帅 《热加工工艺》2015,(2):41-43,46
采用Gleeble热模拟试验机,对锻态TB6钛合金在变形温度660~1050℃,应变速率0.001~0.1s-1的条件下进行等温恒应变速率压缩试验,研究了TB6钛合金的高温压缩变形行为。基于Prasad判据绘制了该合金的热加工图,结合变形微观显微组织分析,确定了该合金在(α+β)两相区至β相区的最佳工艺参数。结果表明:当应变速率0.01~0.1s-1,变形温度980℃时,其变形机制为动态回复,失稳现象不明显。最终确定了应变速率为0.001~0.1 s-1,变形温度为815℃左右,为该合金的最佳热加工工艺参数。  相似文献   

18.
采用Gleeble-3500热模拟试验机研究了Ti-22Al-24Nb合金在温度为900~1 110℃和应变速率为0.01~10s~(-1)条件下的高温流动应力及微观组织,分析了应变速率和变形温度对高温流动应力及热变形组织的影响。结果表明,变形温度和应变速率对Ti-22Al-24Nb合金的流动应力随变形温度的升高而降低,随应变速率的增加而升高。在α_2+B_2两相区,高应变速率下(6)ε≥1.0s~(-1))进行变形时,合金显微组织发生局部塑性流动和绝热剪切。在B_2单相区,低应变速率(6)ε≤0.1s~(-1))进行变形时,有明显的动态再结晶晶粒产生。高应变速率下,原始B_2相晶粒被明显拉长,晶界多呈不连续状态;低应变速率下变形时,随变形温度升高,合金易发生动态再结晶,当变形温度高于990℃时出现明显的动态再结晶特征;高应变速率下变形时,晶界模糊,随变形温度降低,晶界几乎全部消失,合金易发生局部塑性流动和绝热剪切。  相似文献   

19.
两相区变形温度对TC18钛合金组织转变规律产生重要的影响。利用热模拟实验机Gleeble3800研究了600~800℃变形的应力应变曲线特性,观察了变形后的组织及β区处理组织。结果表明:随着变形温度降低,应力应变曲线的峰值应力急剧增加,600℃变形的峰值应力达到700 MPa;随着变形温度降低,α相尺寸减小;在变形温度750℃并β区处理后,α相在β晶粒内依然存在,而变形温度800℃,α相基本完全融入β晶粒内。变形温度的降低,增加了α相的稳定性和数量,使α相在β区处理后可以保留下来。  相似文献   

20.
研究了TB8合金在不同变形条件下的超塑性及其显微组织。结果表明,变形温度为690~840℃、应变速率为1.0×10~(-4)~1.0×10~(-3)s~(-1)时,TB8钛合金均具有超塑性。750℃、1.0×10~(-4)s~(-1)拉伸时,合金塑性最佳,伸长率为524.9%。变形过程中,变形软化和加工硬化相互抵消,表现为传统的超塑性变形稳态流动特征。变形温度、应变速率和变形程度对合金的超塑性、显微组织均有明显影响。应变速率越低,等轴β相晶粒尺寸越大。拉伸温度升高,β相晶粒尺寸增大,α相颗粒逐渐被溶解,β相饱和化,但仍能保持一定的等轴度。随着变形程度增大,β相晶界和基体弥散析出的α相越多,细小、弥散分布的α相可以抑制晶粒的过分长大,使合金塑性得到改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号