首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Constitutivemodelisamathematicalrepresentationofthedeformationresponseofamaterialtoexternallyap pliedloading ,includingenvironmentalfactors .Thepre ciseknowledgeoftheconstitutivebehaviorofthematerialisthefoundationofnumericalsimulationtechnologyofmateri…  相似文献   

2.
1IntroductionAs a typical wrought magnesiumalloy,AZ31alloyhas a wide prospect for applications inthe fields of auto-mobiles,electronic appliances and aeronautic facili-ties[1,2].However,due to the hexagonal close-packed(HCP)structure of magnesium,the ductility of AZ31al-loy at roomtemperature is rather poor,which greatly re-stricts its applications in structural fields[3-5].Owing tothe activation of non-basal slip system[6],the ductility ofMg alloycan be significantlyimproved at elevatedtem…  相似文献   

3.
Superplastic behaviors of quasicrystal phase containing Mg-5.8Zn-1Y-0.48Zr alloy sheets fabricated by combination of extrusion and hot-rolling processes have been investigated at temperature ranging from 623 to 753 K and at the strain rates ranging from 10-4 to 10-2 s-1 by uniaxial tensile tests. An excellent superplasticity with the maximum elongation to failure of 1020% was obtained at 753 K and the strain rate of 1.04×10-3 s-1 and its strain rate sensitivity, m, is as high as up to 0.75. The microstructure was stable during superplastic deformation due to the uniformly distributed fine quasicrystal particles. In addition, micro-cavities and their coalescences were observed in the superplastic deformation of the ZW61 magnesium alloy. Grain boundary sliding (GBS) was considered to be the main deformation mechanism during the superplastic deformation. Dislocation creep controlled by atom diffusion through grain boundaries or interior grains is suggested mainly to accommodate the GBS in super-plastic deformation.  相似文献   

4.
1 INTRODUCTIONDuringhotworking ,severalmetallurgicalphenomenasuchaswork hardening (WH ) ,dynamicrecovery (DRV) ,anddynamicre crystallizaiton (DRX )occursimultaneous ly[1 5 ] .Especially ,theoccurrenceofDRX ,canrefinegrainandreducedeformationresistanceinpracticalhot w…  相似文献   

5.
High temperature plastic deformation behavior of non-orientated electrical steel was investigated by Gleeble 1500 thermo-mechanical simulator at strain rate of 0.01−10 s−1 and high temperature of 500–1 200 °C. The stress level factor (a), stress exponent (n), structural factor (A) and activation energy (Q) of high temperature plastic deformation process of non-orientated electrical steel in different temperature ranges were calculated by the Arrhenius model. The results show that, with dynamic elevation of deformation temperature, phase transformation from α-Fe to γ-Fe takes place simultaneously during plastic deformation, dynamic recovery and dynamic recrystallization process, leading to an irregular change of the steady flow stress. For high temperature plastic deformation between 500 and 800°C, the calculated values of a, n, A, and Q are 0.039 0 MPa−1, 7.93, 1.9×1018 s−1, and 334.8 kJ/mol, respectively, and for high temperature plastic deformation between 1 050 and 1 200 °C, the calculated values of a, n, A, and Q are 0.125 8 MPa−1, 5.29, 1.0×1028 s−1, and 769.9 kJ/mol, respectively. Foundation item: Project(2005038560) supported by the Postdoctoral Foundation of China; Project(05GK1002-2) supported by Key Program of Hunan Province  相似文献   

6.
A high-Mg2Si content Al alloy was extruded by equal channel angular pressing (ECAP) for 8 passes at 250 °C and an ultrafine-grained structure with an average grain size of about 1.5 μm was achieved. The coarse skeleton-shaped Mg2Si phase presenting in the as-cast alloy are significantly fragmented into fine rod-shaped as well as equiaxed particles mostly less than about 230 nm and become relatively dispersed. The tensile strength 192.8 MPa and the elongation up to 31.3% at ambient temperature are attained in the 8-pass ECAPed alloy versus 163.3 MPa and 9.1% in the as-cast alloy. High-temperature creep test at 250 °C reveals that the ECAPed sample exhibits a high elongation close to 100% at a relatively high creep rate 7.64×10−5 s−1, compared to the elongation 56% at a low strain rate 1.74×10−7 s−1 in the as-cast alloy.  相似文献   

7.
The properties of low-heat Portland cement concrete(LHC) were studied in detail. The experimental results show that the LHC concrete has characteristics of a higher physical mechanical behavior, deformation and durability. Compared with moderate-heat Portland cement(MHC), the average hydration heat of LHC concrete is reduced by about 17.5%. Under same mixing proportion, the adiabatic temperature rise of LHC concrete was reduced by 2 ℃-3 ℃,and the limits tension of LHC concrete was increased by 10× 10^-6-15×10^-6 than that of MHC. Moreover, it is indicated that LHC concrete has a better anti-crack behavior than MHC concrete.  相似文献   

8.
The dynamic recrystallization (DRX) behavior of Nb-Ti microalloyed steels was investigated by isothermal single compression tests in the temperature range of 900-1 150 ℃ at constant strain rates of 0.1-5 s^-1. DRX was retarded effectively at low temperature due to the onset of dynamic precipitation of Nb and Ti carbonitrides, resulting in higher values of the peak strain. An expression was developed for the activation energy of deformation as a function of the contents of Nb and Ti in solution as well as other alloying elements. A new value of corrective factor was determined and applied to quantify the retardation produced by increase in the amount of Nb and Ti dissolved at the reheating temperature. The ratio of critical strain to peak strain decreases with increasing equivalent Nb content. In addition, the effects of Ti content and deformation conditions on DRX kinetics and steady state grain size were determined. Finally, the kinetics of dynamic precipitation was determined and effect of dynamic precipitation on the onset of DRX was clarified based on the comparison between precipitate pinning force and recrystallization driving force.  相似文献   

9.
Gleeble-1500D thermal simulation tester was employed in the hot-compression investigation of as-cast nuclear 304 austenitic stainless steel under conditions: deformation temperature 950―1200℃; deformations 30% and 50%; deformation rates 0.01 and 0.1 s?1. The results show that the flow stress decreases with temperature rise under the same strain rate and deformation, that the flow stress increases with deformation under the same temperature and strain rate, and that the flow stress increases with strain rate...  相似文献   

10.
Isothermal compression tests at temperatures from 1 273 to 1 423 K and strain rates from 0.1 to 10 s-1 were carried out to investigate the flow behaviors of Q420qE steel.Stress-strain data collected from the tests were employed to establish the constitutive equation,in which the influence of strain was incorporated by considering the effect of strain on material constants Q,n,α,and ln A.The results show that the flow stress curves are dependent on the strain,strain rate and deformation temperature.They disp...  相似文献   

11.
A set of coupling experimental instrument was designed to study the transport properties of chloride ion in concrete under simultaneous coupling action of fatigue load and environmental factors. Firstly the water-saturated performance of modern concrete was investigated, then diffusion performance of chloride ion under different stress levels and different temperature were studied respectively; meanwhile, the time-dependent behavior of the chloride ion diffusion in concrete was also researched. The results showed that the saturation degree of concrete can reach as high as 99%. Besides, diffusion coefficient of chloride ion increased with increasing of the stress level and temperature, and when the stress level and temperature are at 0.6 and 60 ℃ respectively, the diffusion coefficient is 6.3×10-14 m2/s, moreover the diffusion coefficient of chloride ion in concrete decreased with time under the simultaneous coupling action of fatigue load and environment factors.  相似文献   

12.
The deformation behavior of a new Al-Zn-Cu-Mg-Sc-Zr alloy was investigated with compression tests in temperature range of 380–470 °C and strain rate range of 0.001–10 s−1 using Gleeble 1500 system, and the associated microstructural evolutions were studied by metallographic microscopy and transmission electron microscopy. The results show that true stress—strain curves exhibit a peak stress, followed by a dynamic flow softening at low strains (ɛ<0.05). The stress decreases with increasing deformation temperature and decreasing strain rate, which can be represented by a Zener-Hollomon exponential equation with the activation energy for deformation of 157.9 kJ/mol. The substructure in the deformed specimens consists of few fine precipitates with equaixed polygonized subgrains in the elongated grains and developed serrations at the grain boundaries. The dynamic flow softening is attributed mainly to dynamic recovery and dynamic recrystallization. Foundation item: Project(2006AA03Z523) supported by the National High-Tech Research and Development Program of China  相似文献   

13.
Slow strain rate testing (SSRT) was employed to study the stress corrosion cracking (SCC) behavior of ZE41 magnesium alloy in 0.01 M NaCl solution. Smooth tensile specimens with different thicknesses were strained dynamically in both longitudinal and transverse direction under permanent immersions at a strain rate of 10−6 s−1. It is found that ZE41 magnesium alloy is susceptible to SCC in 0.01 M NaCl solution. The SCC susceptibility of the thinner specimen is lower than that of the thicker specimen. Also, the longitudinal specimens are slightly more susceptible to SCC than the transverse specimens. The SCC mechanism of magnesium alloy is attributed to the combination of anodic dissolution with hydrogen embrittlement. Funded by the National Natural Science Foundation of China (No. 50771093)  相似文献   

14.
The isothermal oxidation behavior at 900–1300°C for 20 h in air of bulk Ti3AlC2 with 2.8 wt% TiC sintered by means of hot pressing was investigated in the work. The isothermal oxidation behavior generally followed a parabolic rate law. The parabolic rate constants increased from 1.39×10−10 kg2·m−4·s−1 at 900°C to 5.56×10−9 kg2·m−4·s−1 at 1300°C. The calculated activation energy was 136.45 kJ/mol. It was demonstrated that Ti3AlC2 had excellent oxidation resistance due to the continuous, dense and adhesive protect scales consisted of a mass of α-Al2O3 and a little of TiO2 and/or Al2TiO5. In principle, the oxide scale was grown by the inward diffusion of O2− and the outward diffusion of Ti4+ and Al3+. The rapid outward diffusion of cations usually resulted in the formation of cracks, gaps, and holes.  相似文献   

15.
The sorption behavior of amino methylene phosphonic acid resin (APAR) for In(III) was investigated. Experimental results show that In(III) adsorbed on APAR can be eluted with 2mol·L−1 HCl. The apparent rate constant is k298=1.50×10−5s−1. The sorption behavior of APAR for In(III) obeys the Freundlich isotherm. The thermodynamic parameters of sorption, enthalpy change ΔH, free energy change ΔG and entropy change ΔS of sorption (APAR) for In(III) are 24.1kJ·mol−1, −35.1kJ·mol−1 and 200J·mol−1·K−1, respectively. The coordination molar ratio of the functional group of APAR to In(III) is 2∶1. The sorption mechanism of APAR for In(III) was examined by IR spectrometry. XIONG Chun-hua: Born in 1959 0 This project was supported by Foundation of Zhejiang Provincial Education Bureau(No.20010677) and Lishui Science and Technology Bureau(No.2001012).  相似文献   

16.
In order to establish a model between the grain size and the process parameters, the hot deformation behaviors of Ti-49.5Al alloy was investigated by isothermal compressive tests at temperatures ranging from 800 to 1 100 ℃ with strain rates of 10^-3-10^-1 s^-1. Within this range, the deformation behavior obeys the power law relationship, which can be described using the kinetic rate equation. The stress exponent, n, has a value of about 5.0, and the apparent activation energy is about 320 J/mol, which fits well with the value estimated in previous investigations. The results show that, the dependence of flow stress on the recrystallized grain size can be expressed by the equation: σ = K1 drex^-0.56. The relationship between the deformed microstructure and the process control parameter can be expressed by the formula: lgdrex= -0.281 1gZ 3.908 1.  相似文献   

17.
The characteristics of hot deformation of an α+β titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si with acicular microstructure were studied using isothermal hot compressive tests in a strain rate range of 0.01-10 s-1 at 860-1 100 °C. The true stress-true strain curves of alloy hot-compressed in the α+β region exhibit a peak stress followed by continuous flow softening; whereas in the β region,the flow stress attains a steady-state regime. At a strain rate of 10 s-1 and in a wide temperature range,the alloy exhibit...  相似文献   

18.
Adsorption of Macroporous Phosphonic Acid Resin for Nickel   总被引:2,自引:0,他引:2  
1Introduction Thesynthesischaracterizationandadsorptionproper tyofpolymericmaterialshavebeenresearchedinrecent years[110].Macroporousphosphonicacidresin[11](PAR)isanovelpolymericmaterialwhichcontainsafunctional groupof[PO(OH)2].Ithasalotofadvantagessuchas…  相似文献   

19.
The adsorption properties of a novel macroporous weak acid resin (D152) for Pb2+ were investigated with chemical methods. The optimal adsorption condition of D152 resin for Pb2+ is at pH 6.00 in HAc-NaAc medium. The statically saturated adsorption capacity is 527 mg/g at 298 K. Pb2+ adsorbed on D152 resin can be eluted with 0.05 mol/L HCl quantitatively. The adsorption rate constants determined under various temperatures are k 288 K=2.22×10−5 st-1, k 298 K=2.51×10−5 s−1, and k 308 K= 2.95×10−5 s−1, respectively. The apparent activation energy, E a is 10.5 kJ/mol, and the adsorption parameters of thermodynamics are ΔH Θ=13.3 kJ/mol, ΔS Θ=119 J/(mol·K), and ΔG Θ 298 K =−22.2 kJ/mol, respectively. The adsorption behavior of D152 resin for Pb2+ follows Langmuir model. Foundation item: Project(2008F70059) supported by the Scientific and Technological Research Planning of Zhejiang Province, China  相似文献   

20.
The adsorption behavior and mechanism of D113 resin for Dy(III) was investigated by using the method of resin adsorption. Experimental results show that the optimum medium pH of adsorption of D113 resin for Dy3+ is pH=6.00 in the HAc-NaAc medium. The static adsorption capacity of D113 resin for Dy3+ is 292.7 mg·g−1. The optimum eluant is 0.5 mol·L−1 HCl. The adsorption rate constant is k 298=6.8×10−6s−1. The apparent activation energy of D113 resin for Dy(III) is 14.79 kJ·mol−1. The adsorption behavior of D113 resin for Dy(III) obeys the Freundlich isotherm. The adsorption parameters of thermodynamic are ΔH=14.48 kJ·mol−1, ΔS=54.69 J·mol−1·K−1, ΔG=−1.82 kJ·mol−1.The adsorption mechanism of D113 resin for Dy3+ was confirmed by chemical analysis and IR spectra. Funded by the Natural Science Foundation of Zhejiang Province (No.201027), Foundation of Zhejiang Provincial Education Bureau (No.20040551) and Zhoushan Science Technology Bureau (No.04114)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号