首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
障碍物对瓦斯爆炸过程中火焰和爆炸波的影响   总被引:43,自引:4,他引:39  
对瓦斯爆炸过程中障碍物对火焰和爆炸波的影响进行了试验研究.结果表明,障碍物对瓦斯爆炸过程中产生的火焰和爆炸波具有重要影响.有障碍物存在时,火焰的传播速度将迅速提高,在20倍长径比处达到最大值,随后逐渐衰减,直至熄灭.原因是障碍物的存在加剧了火焰传播过程中的湍流现象,而湍流又加速了火焰传播.障碍物的存在使爆炸波的传播曲线变化幅度迅速增大,并可能产生突变界面和马赫数M≥1的情况,即产生激波,从而增大瓦斯爆炸的威力.因此,应尽量减少矿井巷道中的障碍物.  相似文献   

2.
瓦斯爆炸过程中火焰传播规律的模拟研究   总被引:10,自引:1,他引:10  
在模拟实验和数值计算的基础上 ,研究了瓦斯爆炸过程中火焰传播规律及其加速机理 .研究结果表明 ,障碍物对瓦斯爆炸过程中火焰传播规律有重要影响 .障碍物的存在将使瓦斯爆炸过程中火焰的传播速度迅速提高 .瓦斯爆炸时 ,火焰阵面附近温度较高 ,阵面前附近区域温度梯度变化较大 ,阵面后区域的温度变化较小 .障碍物附近温度很快上升到最大值 ,然后由于化学反应结束及管道壁吸热 ,温度开始下降 .在火焰传播通道上设置的障碍物对气相火焰具有加速作用 ,加速作用的机理主要是由于障碍物诱导的湍流区对燃烧过程的正反馈造成的  相似文献   

3.
利用计算流体动力学软件FLUENT研究了受限空间内平行障碍物和交错障碍物对火焰形状的影响.模拟采用500mm×150mm二维矩形空间模型,计算了2个平行障碍物、2个交错障碍物、3个平行障碍物、3个交错障碍物等4种工况下的火焰发展过程.障碍物间距100 mm,阻塞率为0.5.选取k-epsilon Realizable湍流模型,P1辐射模型和涡耗散模型模拟瓦斯爆炸火焰传播.模拟结果表明:受到交错障碍物影响,10ms处已经出现明显的火焰湍流,且交错障碍物具有更大的预热区面积.火焰传播过程与实验相近,模拟结果可靠,为进一步利用数值模拟方法研究瓦斯爆炸相关内容提供了参考.  相似文献   

4.
湍流的诱导及对瓦斯爆炸火焰传播的作用   总被引:14,自引:2,他引:14  
对巷道面积突变和巷道分叉对瓦斯爆炸过程中火焰传播速度的影响进行了试验研究。并利用加速环研究了巷道支架对瓦斯爆炸传播规律的影响,在此基础上对湍流的形成过程进行了理论分析。研究结果表明,管路分叉,面积突变对瓦斯爆炸过程中火焰传播规律有重要影响,导致产生附加湍流,使瓦斯爆炸过程中火焰的传播速度迅速增大;在管道内装加速环,将使瓦斯爆炸过程中湍流度加剧,火焰的传播速度更大,激波生成的位置。最大点位置前移。强度增大,研究结果对指导现场防治瓦斯爆炸和减轻瓦斯爆炸的威力具有重要作用。  相似文献   

5.
瓦斯爆炸运动火焰生成压力波的数值模拟   总被引:1,自引:0,他引:1  
从三维N-S方程出发,用TVD格式,对瓦斯爆炸过程中火焰产生压力波的过程进行了数值模拟,在此基础上,模拟了氢氧燃烧驱动的破膜过程以及破膜前后压缩波、稀疏波对火焰阵面的影响,同时,也研究了瓦斯爆炸过程中,压力波、火焰与障碍物的相互作用,数值模拟结果与理论分析吻合较好,从而进一步验证了该程序能处理含有化学反应和复杂管道的预混可燃气体爆炸问题。  相似文献   

6.
为了研究交错障碍物对瓦斯爆炸火焰形状、火焰速度及爆炸压力的影响,设计并搭建了150mm×150mm×500mm半封闭透明腔体的瓦斯爆炸实验台,采用化学当量比浓度的甲烷-空气预混气体,并与平行障碍物工况进行了比较.实验结果表明:与平行障碍物相比,交错障碍物明显增强了火焰形变,提高了火焰速度和爆炸压力,其中火焰速度和爆炸压力的提升率最高分别达到78.0%和198%.因此,在实际巷道中,应尽量避免障碍物的交错放置.  相似文献   

7.
利用自建的模拟煤矿巷道的水平管道式气体爆炸实验系统,在置障条件下对瓦斯爆炸特性进行实验研究,改变内置障碍物的间距,研究其对瓦斯爆炸压力及火焰传播速度的影响规律.结果表明:瓦斯爆炸压力随着障碍物间距的增加呈现缓慢递增的变化规律;而火焰传播速度也随着障碍物间距的增加而递增.总体来说,障碍物间距的改变对爆炸压力的影响程度比其对火焰传播速度的影响要小一些.  相似文献   

8.
为了研究障碍物诱导湍流火焰特性,基于150 mm×150 mm×500 mm的小尺度爆炸腔体,在三个障碍物交错放置的条件下,采用预混燃烧模型对瓦斯爆炸过程进行大涡模拟。基于模拟结果,分析了瓦斯爆炸过程中火焰结构、未燃气体流动迹线以及火焰与未燃气体漩涡耦合规律。结果发现:小尺度条件下,障碍物诱导火焰形变,增大火焰面积,提高燃烧速率;在障碍物扰动作用下,未燃预混气体在障碍物形成漩涡,且漩涡尺寸及强度逐渐增大;未燃预混气体漩涡将爆炸火焰卷入其中,形成湍流火焰。  相似文献   

9.
煤矿巷道中障碍物随处可见,对瓦斯爆炸过程具有重要影响.为降低瓦斯爆炸造成的损害,利用甲烷-空气混合物,在自制的水平管道装置中,通过改变障碍物距点火源的位置、间距和数量,研究瓦斯爆炸压力的变化规律.结果表明:改变障碍物位置和间距,爆炸压力变化很小,说明障碍物的位置和间距对瓦斯爆炸压力无明显影响.随着障碍物数量的增加,爆炸压力也增大,当障碍物数量多于5片后,爆炸压力的变化较小,说明障碍物数量对瓦斯爆炸压力的影响明显,因此应尽量避免在巷道存放障碍物.  相似文献   

10.
壁面粗糙度对瓦斯爆炸火焰波传播的影响   总被引:2,自引:0,他引:2  
在实验研究的基础上,分析了壁面粗糙度对瓦斯爆炸过程中火焰传播规律的重要影响.研究结果表明,壁面粗糙度对瓦斯爆炸过程的影响很大,相比光滑管道,粗糙管的火焰速度大幅度提高;对于管道终端闭口系统和开口系统的瓦斯爆炸过程,壁面粗糙度对两种系统的影响规律是一致的,影响程度比较接近.基于壁面粗糙度对瓦斯爆炸影响的实验结论,从理论上分析了壁面粗糙度对高速传播的火焰区的影响,并对实验现象做出了合理解释.因此,在矿井开拓中,应尽可能减小巷道壁面的粗糙度.研究结果对指导现场如何防治瓦斯爆炸,减轻瓦斯爆炸的威力具有重要作用.  相似文献   

11.
受限空间瓦斯爆炸反射波及对火焰传播的影响   总被引:5,自引:0,他引:5  
在研究了一维受限空间中固体壁面反射波特征的基础上,采用实验方法研究了该反射波对瓦斯爆炸过程中火焰传播特性的影响作用.研究结果表明:当一维受限空间中固体壁面反射波与火焰面相遇时,可使火焰速度迅速下降,然后火焰再加速,形成二次加速,该反射波强度较高,抑制作用增强时,可使火焰熄灭;当反射波在内部与火焰相遇时(火焰锋面已过),对火焰传播速度不产生影响,但可造成火焰内部的分离现象.  相似文献   

12.
为揭示瓦斯爆炸过程中火焰、毒气及压力三者间相互关系,采用一端封闭的爆炸试验装置,通过改变瓦斯聚集长度和点火强度,研究了瓦斯爆轰及爆燃状态下火焰、毒气及压力传播变化规律.结果表明,管道内瓦斯爆燃状态下火焰的传播速度远小于爆轰状态下的传播速度,变化趋势呈线性;瓦斯爆炸火焰传播速度的大小直接影响爆轰的形成以及爆炸强度和爆炸传播距离;爆燃状态下火焰和毒气传播的距离基本相当,均为原始瓦斯聚集总长度的2倍左右;爆轰状态下火焰和毒气传播的距离基本相当,均大于原始瓦斯聚集长度,但传播距离不确定.  相似文献   

13.
该微胶囊化红磷阻燃剂是一种高效、新型阻燃剂,主要用于橡胶、塑料行业,如用于煤矿上的阻燃橡胶输送带,防止或减少瓦斯爆炸事故.另外还可用于聚氨酯泡沫、聚酰胺、聚丙烯、不饱和聚酯玻璃钢等制品和材料中.  相似文献   

14.
瓦斯爆炸过程中爆炸波的结构变化规律   总被引:12,自引:1,他引:12  
在实验的基础上,研究了管内瓦斯爆炸过程中爆炸波结构变化规律。研究结果表明,管内瓦斯爆炸过程中所产生的爆炸波有两个峰值,第一峰值为爆炸波压力,第二峰值压力为火焰到达后加热气体升压所致。形成激波后,爆炸波两峰值往下游传播越来越靠近,测试结果与爆炸传播理论是相互验证的。  相似文献   

15.
16.
煤尘参与的瓦斯爆炸事故具有很强的破坏性和伤害性,是煤矿的重大事故之一.用一端开口的半封闭管道爆炸实验装置,通过改变瓦斯与煤尘耦合爆炸浓度及点火条件,揭示受限空间瓦斯与煤尘耦合爆炸的规律.实验结果表明,封闭下的耦合体爆炸火焰传播速度较开口状态达到极值快,但极值点距点火位置较近,开口爆炸火焰传播距离是积聚耦合体长度的2倍左右;瓦斯参与的煤尘爆炸,爆炸相对强度随瓦斯浓度的增加而增加,传播距离更远;理论推导瓦斯与煤尘耦合爆炸超压传播距离与爆炸能量的平方根成正比,与巷道断面积的平方根成反比,研究结果为防治瓦斯爆炸、事故勘验以及阻隔爆装置的研制提供了可靠的实验数据.  相似文献   

17.
Simulation Analysis of Indoor Gas Explosion Damage   总被引:4,自引:0,他引:4  
The influence factors and process of indoor gas explosion are studied with AutoReaGas explosion simula-tor. The result shows that venting pressure has great influence on the indoor gas explosion damage. The higher the venting pressure is, the more serious the hazard consequence will be. The ignition location has also evident ef-fect on the gas explosion damage. The explosion static overpressure would not cause major injury to person and se-rious damage to structure in the case of low venting pressure (lower than 2 kPa). The high temperature combus-tion after the explosion is the major factor to person injury in indoor gas explosion accidents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号