首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

BaFe12O19 (BaM) was synthesized through the co-precipitation route. Pure phase BaM was formed after calcination of precipitated powder at 900 °C. BaM was sintered at three different temperatures; 1100, 1200, and 1300 °C to study the sintering kinetics by varying the sintering time from 1 to 4 h. Apparent porosity decreased, and bulk density increased with increasing sintering temperature and period. A bulk density of about 4.6 g/cm3 was achieved after sintering at 1300 °C/4 h. The rate-controlling mechanism of BaM densification was the diffusion of oxygen, and the activation energy for the sintering process was 274 kJ/mol. The grain size of BaM increased with rising sintering temperatures. Permittivity increased from about 11 to 17 and the permeability increased from about 10 to 16 with the increase in sintering temperature from 1100 to 1300 °C. Saturation magnetization was also enhanced to about 69 emu/g after sintering at 1300 °C/4 h. Therefore, BaM ferrite synthesized through the co-precipitation route can be effectively used for high-frequency applications after sintering at 1300 °C.

  相似文献   

2.
Polycrystalline samples of (Pb0.25Sr0.75)TiO3 (PST75) were prepared by the solid-state reaction method. The effects of firing temperatures and excess PbO on PST75 ceramics were investigated. The PST75 was calcined between 600 and 1000 °C for 3 h and the sintering temperature ranged between 1050 and 1250 °C for 2 h. The optimized calcination and sintering conditions were identified as 950 and 1250 °C, respectively. The lattice parameter c increased, while the lattice parameter a decreased with increased firing temperatures. The average particle size and average grain size increased with increased firing temperatures. After the addition of PbO—excess 0, 1, 3, 5, and 10 wt%—in the PST75 samples, the lattice parameter a decreased. The average particle size and the average grain size increased with the increase of PbO. The porous microstructure slightly decreased with an increasing amount of PbO—up to 3 wt%—then slightly increased with the higher excess PbO. The density was improved by adding 3 wt% of excess PbO. A low dielectric loss was observed from the 3 wt% excess PbO sample.  相似文献   

3.
Tetragonal zirconia polycrystals (TZP) in the system ZrO2 · TiO2 · CeO2 have been prepared from titanium and zirconium alkoxides and cerium nitrate precursors. The change in microstructure with sintering temperature in the range 1300 to 1600° C has been characterized. A fully tetragonal structure with theoretical final density has been achieved after liquid-phase sintering in the range 1350 to 1400° C for 2h. Sintering at temperatures above 1450° C resulted in a loss of stabilizer from the matrix, by the formation of zirconium titanate and to a cerium-, titanium-rich liquid. The loss of stabilizer was such that in the temperature range 1500 to 1600° C, extensive transformation to monoclinic zirconia occurred spontaneously on cooling. The tetragonal zirconia formed after sintering at 1350° C was found to be very stable. Thec/a ratio of the tetragonal phase in this system is higher than in any of the binary TZP systems reported in the literature. The stability of the tetragonal phase is believed to be associated with this highc/a ratio.  相似文献   

4.
A two-step sintering approach composed of spark-plasma-sintering (SPS) technique at 1000 °C for 1 min and under a uniaxial pressure of 63 MPa followed by conventional sintering at 1400 °C for 3 h is proposed for synthesis of dense Ba(Ti0.87Sn0.13)O3 ceramics. Starting powders had grain size of about 90 nm and were obtained by co-precipitation. The SPS pellets consist of submicron (300–500 nm) grains. X-ray diffraction analysis of as-prepared Ba(Ti0.87Sn0.13)O3 ceramic shows the occurrence of cubic and tetragonal phase coexistence for the pellets obtained after SPS processing and the presence of only tetragonal phase in the samples after the second (conventional) sintering. Grain uniformity in the final product is high, with average size of ~2 μm. The apparent densities of the sintered pellets at temperature of 1400 °C were ~92% of the theoretical value of Ba(Ti0.87Sn0.13)O3. The ceramics exhibit a high relative dielectric constant of 6,550 and a dielectric loss (tan δ) = 0.078 at Curie temperature of 63 °C and 10 Hz.  相似文献   

5.
The lattice and total Li+-ionic conductivity of Li0.29La0.57TiO3 ceramic (LLTO) sintered at 1200 °C were determined as functions of powder calcination temperature and sintering duration, and these results were correlated with the relative degrees of Li+-ordering, Li-content, grain size, and bulk density to assess the relative impact of these parameters on material performance. Under all conditions, LLTO formed with a high degree of tetragonal superstructure to its perovskite related framework, and the lattice conductivity closely followed the relative amounts of the superstructure, as evaluated via determination of the sample ordering parameter from X-ray diffraction data. LLTO powders that were calcined at 900 °C for 1 h and sintered at 1200 °C for 6 h gave lattice conductivity values (~1.14 × 10−3 S cm−1) comparable within the highest ranges reported in the literature. This coincided with the lowest degree of tetragonal superstructure formation, and it was also found to be largely independent of the values of Li-content measured on sintered ceramic despite significant Li2O volatilization at longer sintering times (up to 23 % after 12 h at 1200 °C). Samples of LLTO powder that were calcined at 1100 °C and sintered at 1200 °C for 12 h resulted in the highest total Li-ion conductivity value ~6.30 × 10−5 S cm−1. The total conductivity of LLTO varied inversely with grain size when the grains were <20 μm but was insensitive to that parameter above that size threshold. The strongest influence on total conductivity was primarily the bulk ceramic density. It was estimated from measured values that as the bulk ceramic density approached the full theoretical value for LLTO the total conductivity could near the lattice conductivity of ~1.2 × 10−3 S cm−1.  相似文献   

6.
The paper presents investigation of four lead free thick film resistor pastes, developed at ITME, denoted R-100, R-1k, R-10k and R-100k with sheet resistivities of 0.1, 1, 10 and 100 kΩ/□, respectively. The resistors were based on RuO2 as the conductive phase. The aim of the work was to evaluate the influence of firing conditions of the resistive pastes on a sintering process. The pastes were screen printed onto alumina substrate with prefired AgPd lead-free terminations. They were fired at several temperatures from 750 to 950 °C for 10 min at peak temperature, as well as fired at the highest temperature for 6 h, in order to bring the sintering process into the equilibrium. The properties of the resistors, i.e , sheet resistivity and temperature coefficient of resistance (TCR), microstructure changes, glass crystallization upon firing, etc., were examined. Dried and fired resistor samples were evaluated by X-Ray diffraction analysis and by the scanning electron microscopy. The RuO2 conductive phase maintained the same crystal structure regardless of the firing conditions. No devitrification was observed in lead-free resistors glasses. The lattice constants of RuO2 were uniform after firing at temperatures over 800 °C. The resistors matched the desired resistivity and the TCR was the least temperature dependent at the firing temperatures around 850 °C.  相似文献   

7.
TiC reinforced Ti-matrix composites have been synthesized successfully by reactive sintering of Ti-1.5%Fe-2.25%Mo (wt%) powder compacts with addition of Mo2C and VC particles. The reactions for the formation of TiC particles start at 600 °C, but the distribution of TiC particles and the densification behavior in the two compacts are significantly influenced by the metal carbides (Mo2C or VC). The compact with addition of Mo2C has a relative density of 98% after sintering at 1300 °C for 1.5 h, but TiC particles are agglomerated in the Ti matrix. The compact with addition of VC has a relative density of about 91% after sintering at 1300 °C for 1.5 h, but TiC particles distribute more homogenously in the Ti matrix. Different TiC particle distribution and densification behaviors are attributed to the reaction rates between Ti and metal carbides and the subsequent diffusion process.  相似文献   

8.
Effects of the sintering temperature on the microstructure and electrical properties of (Ba0.90Ca0.10)(Ti0.85Zr0.15)O3 (BCTZ) lead-free piezoelectric ceramics have been studied, where these ceramics were prepared by the conventional oxide-mixed method at varied sintering temperatures from 1300 °C to 1500 °C. These BCTZ ceramics exhibits a phase transition from a rhombohedral phase to the coexistence of rhombohedral and tetragonal phases with an increase of sintering temperature. With an increase of sintering temperature, their relative density and average grain size gradually increase, and electrical properties are improved greatly. These BCTZ ceramics sintered at ~1440 °C have optimum electrical properties: d33  442 pC/N and kp  48.9%, making it a promising material for lead-free piezoelectric ceramics.  相似文献   

9.
Nanocrystallites of UO2 with a size of 3–5 nm were studied in situ with high temperature X-ray diffraction (HT-XRD), thermogravimetry (TGA), and differential thermal analysis. The evolution of the crystallite size, the lattice parameter, and the strain were determined from ambient temperature up to 1200 °C. Below 700 °C, a weak effect on the crystallite size occurs and it remains below 10 nm, while a strong expansion of the lattice parameter is measured. The strain decreases with temperature and is completely released at 700 °C. Above this temperature, begins the sintering of the nanocrystallites reaching a size of about 80 nm at 1200 °C. The weight loss curve observed in TGA is assigned to the desorption of water molecules and is correlated with the strain evolution observed by HT-XRD. The linear thermal expansion and the thermal expansion coefficient at 800 °C are 1.3% and 16.9 × 10−6 °C−1, respectively.  相似文献   

10.
Mullite–zirconia ceramic composites are prepared by reaction sintering of plasma spheroidized (PS) zircon–alumina powders in a spark plasma sintering (SPS) system at 1000, 1100, 1200 and 1300 °C with duration of 10 and 30 min. At SPS temperature of 1000 °C, evidence of zircon decomposition is detected, while at 1200 °C, mullite formation dominates the process, resulting in significant increases in microhardness, Young's modulus and fracture toughness values. At SPS temperature of 1300 °C, due to re-crystallization, rapid grain growth, and intergranular micro cracking, there is a slight decrease of microhardness and Young's modulus values. Yet, fracture toughness as high as 11.2±1.1 MPa m1/2 is obtained by the indentation technique. The results indicate that with optimized sintering parameters, a combination of PS and SPS is effective in preparing high performance mullite/ZrO2 composites from zircon/alumina mixtures at a relatively low reaction sintering temperature.  相似文献   

11.
The high temperature behavior of SrSO4, SrCO3 and Al2O3 mixtures was studied. A mixture of 1:1 mole of SrSO4 and mechanically activated SrCO3 was mixed and characterized using thermal gravimetric analysis. Some samples were uniaxially pressed and sintered at 1100, 1200 and 1300 °C for 8 h and then analyzed using X-ray diffraction and scanning electron microscopy. Additionally, a mixture of SrSO4:SrCO3:Al2O3 was uniaxially pressed and sintered at 1500 °C. The decomposition temperature of SrCO3 was decreased 18° by milling for 180 min. Samples sintered at 1300 °C showed a microstructure free of porosity. X-ray diffraction analysis showed the presence of SrO and SrSO4 after sintering at 1100, 1200 and 1300 °C. The mixture containing alumina showed the formation of a strontium aluminum oxide sulfate compound in addition to strontium aluminate.  相似文献   

12.
To improve the mechanical properties and oxidation-resistance properties, a C–TaC–C multi-interlayer structure was introduced in carbon/carbon (C/C) composites by chemical vapor infiltration. Compared with conventional C/C composites, a higher fracture toughness and strength have been achieved by using the C–TaC–C multi-interlayer. In addition, the composites also exhibit a higher preliminary oxidation temperature and a lower mass loss at high temperatures. The oxidation rate of the composites increases with temperature increasing in the range of 700–1300 °C, reaching a maximum value at 1300 °C, then decreases in 1300–1400 °C. A hexagonal structure of Ta2O5 phase is obtained when being oxidized at 700–800 °C, and it transforms to an orthorhombic phase at temperatures above 900 °C. The structures of C–TaC–C multi-interlayer are intact without cracks or porosities after being oxidized at 700–800 °C. In 900–1300 °C, the composites are oxidized uniformly with the formation of pores. At temperatures above 1300 °C, there are oxidation and non-oxidation regions with the oxidation process being controlled by diffusion.  相似文献   

13.
Microstructure characteristics, phase transition, and electrical properties of (K0.4425Na0.52Li0.0375) (Nb0.8925Sb0.07Ta0.0375)O3 (KNLNST) lead-free piezoelectric ceramics prepared by normal sintering were investigated with an emphasis on the influence of sintering temperature. The microstructure and piezoelectric, ferroelectric, and dielectric properties were investigated, with a special emphasis on the influence of sintering temperature from 1,100 to 1,140 °C. Orthorhombic phases mainly exist in the ceramics sintered at 1,100–1,130 °C, whereas the tetragonal phase becomes dominant when sintering temperature is above 1,130 °C. Because of the existence of MPB-like transitional behavior, the piezoelectric coefficient (d 33), electromechanical coupling coefficient (kp), and dielectric constant (ε) show peak values of 304pC/N, 0.48, and 1,909, respectively, which are obtained in the sample sintered at 1,120 °C, and its Curie temperature (T C) is about 271 °C.  相似文献   

14.
A series of zinc oxide based varistors containing 0.5 wt% Bi2O3 and 0.5 wt% Mn2O3 was prepared by a conventional mixed oxide route and sintered at temperatures between 950° and 1300°C. All samples showed varistor behaviour, although as the sintering temperature was increased from 950°C to 1300°C, the non-linearity coefficient, α, decreased from 22 to 3. Deep level transient spectroscopy of the varistors showed that the main active electron trap migrated to shallower levels within the bandgap as the sintering temperature increased. At the lowest sintering temperature, where α attained the highest values, a second, shallower trap was also activated.  相似文献   

15.
Samples of xBiFeO3–(1 − x)BaTiO3 (x = 0, 0.02, 0.04, 0.06, 0.07 and 0.08) were synthesized by solid state reaction technique and sintered in air in the temperature range 1,220–1,280 °C for 4 h. X-ray diffraction data showed that 2–8 mol% BiFeO3 can dissolve into the lattice of BaTiO3 and form single perovskite phase. The crystal structure changes from tetragonal to cubic phase at room temperature when 8 mol% of BiFeO3 was added into BaTiO3. Scanning electron microscope images indicated that the ceramics have compact and uniform microstructures, and the grain size of the ceramics decreases with the increase of BiFeO3 content. Dielectric constants were measured as functions of temperatures (25–200 °C). With rising addition of BiFeO3, the Curie temperature decreases. For the sample with x = 0.08, the phase transition occurred below room temperature. The boundary between tetragonal and cubic phase of the BiFeO3–BaTiO3 system at room temperature locates at a composition between 7 and 8 mol% of BiFeO3. The diffusivity parameter γ for compositions x = 0.02 and x = 0.07 is 1.21 and 1.29, respectively. The relaxor-like behaviour is enhanced by the BiFeO3 addition.  相似文献   

16.
Silver chlorate (AgClO3) undergoes a phase transition from a tetragonal to a cubic phase at 139° C. The temperature dependence of lattice parameters and the coefficient of thermal expansion in the tetragonal phase between 23° C and 130° C and in the cubic phase between 140° C and 184° C have been investigated. The lattice parameters in the tetragonal phase and the lattice parameter in the cubic phase increase with temperature. In the tetragonal phase the coefficient of expansion ( c) increases with temperature whereas the coefficient of expansion along a perpendicular direction ( a) decreases with increasing temperature. In the cubic phase the coefficient of expansion shows a pronounced decrease with increasing temperature. These results have been discussed in the light of the known structure.  相似文献   

17.
The sintering behavior and doping concentration profile of the planar waveguide YAG/Nd:YAG/YAG ceramics by the tape casting and solid-state reaction method were investigated on the basis of densification trajectory, microstructure evolution, and Nd3+ ions diffusion. The porosity of the green body by tape casting and cold isostatic pressing is about 38.6%. And the green bodies were consolidated from 1100 °C to 1800 °C for 0.5–20 h to study the densification and the doping diffusion behaviors. At the temperature higher than 1500 °C, pure YAG phase is formed, followed by the densification and grain growth process. With the increase of temperature, two sintering stages occur, corresponding to remarkable densification and significant grain growth, respectively. The mechanism controlling densification at 1550 °C is grain boundary diffusion. The diffusion of Nd3+ ions is more sensitive to temperature than the sintering time, and the minimum temperature required for the obvious diffusion of Nd3+ ions is higher than 1700 °C. Finally, planar waveguide YAG/1.5 at.%Nd:YAG/YAG transparent ceramics with in-line transmittance of 84.8% at 1064 nm were obtained by vacuum-sintering at 1780 °C for 30 h. The fluorescence lifetime of 4F3/2 state of Nd3+ in the specimen is about 259 μs. The prepared ceramic waveguide was tested in a laser amplifier and the laser pulse was amplificated from 87 mJ to 238 mJ, with the pump energy of 680 mJ.  相似文献   

18.
Perovskite-type La0.7Ca0.3CrO3 composite oxides were synthesized by a combustion method. The calcining condition of the synthesized powders and sintering temperature of ceramic specimens were studied. It was found that a pure perovskite structure was direct acquired in the combustion ash and the fine morphology (~100 nm) was observed in the sample calcined at 600 °C. In view of the relative density, microstructure and electrical conducting properties of the sintering ceramics at different temperatures, the preferred sintering temperature was ascertained to be 1300 °C, at which the sample attains a high relative density of 96.8%, showing an electrical conductivity of 53.6 S cm?1 at 800 °C and much lower activation energy of 0.122 ev. Compared with La0.7Ca0.3CrO3 synthesized by the conventional solid state reaction method, that synthesized by the combustion method exhibits fine morphology and superior sintering activity, effectively lowering the sintering temperature and enhancing electrical conducting properties of the material.  相似文献   

19.
Present work reports the thermal stability and thermal expansion behavior of dual-phase FeCoCrNi2Al HEA prepared by Mechanical Activated Synthesis and consolidated by hot pressing. The thermal stability of the phases present in FeCoCrNi2Al HEA has been extensively studied using in-situ high-temperature X-ray diffraction (HT-XRD) in conjunction with dilatometry and differential scanning calorimetry (DSC). The DSC thermogram shows a single endothermic peak at 1430 °C (1703 K) which belongs to the melting point of the alloy. HT-XRD and dilatometry experiments were carried out from room temperature to 1000 °C (1273 K). HT-XRD study has shown that the room temperature FCC + BCC (face-centred cubic + body-centred cubic) phases remains stable up to 1000 °C (1273 K). Although the amount of BCC phase has increased above 800 °C (1073 K), no additional phase formation was observed in HT-XRD. The coefficient of thermal expansion (CTE) curve shows linear increment up to 1000 °C (1273 K) with a slight change in slope beyond 800 °C (1073 K). Theoretical CTE was computed using the lattice parameter of the FCC phase, obtained from HT-XRD, as a function of temperature and compared with experimental CTE. Third-order polynomial equation was fitted to the experimental CTE data and the constants were evaluated which can be used to predict the coefficient of thermal expansion of the alloy.  相似文献   

20.
The effect of sintering temperature (800–1600°C) on the phase composition, density, and microhardness of WC-8 wt % Co cemented carbide has been studied using x-ray diffraction, scanning electron microscopy, optical microscopy, and density measurements. The results indicate that, during sintering of the starting powder mixture, containing not only WC and Co but also the lower carbide W2C and free carbon, W2C reacts with cobalt metal to form Co3W. At sintering temperatures from 900 to 1200°C, the reaction intermediate is the ternary carbide phase Co6W6C. During sintering at 1300°C, this phase reacts with carbon to form Co3W3C. Sintering at 1000°C and higher temperatures is accompanied by the formation of a cubic solid solution of tungsten carbide in cobalt, β-Co(WC). The density and microhardness of the sintered samples have been measured as functions of sintering temperature, and the optimal sintering temperature has been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号