首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
不同介质下纳秒脉冲介质阻挡放电特性对比   总被引:2,自引:5,他引:2  
介质阻挡材料是影响介质阻挡放电的一个重要因素。为此,采用聚四氟乙烯、K9玻璃和环氧分别作为介质阻挡材料,研究了介质阻挡层厚度、气隙距离、施加脉冲电压幅值、重复频率对放电特性的影响,并对结果进行了对比分析。实验结果表明,阻挡材料的介电常数越大,越容易产生强烈的放电;玻璃为阻挡介质时,能够保持均匀放电的允许介质厚度范围最大,但漏电也最为严重;聚四氟乙烯为阻挡介质时,能够保持均匀放电的允许频率范围最大;环氧为阻挡介质时,能够保持均匀放电的允许电压范围最大。  相似文献   

2.
《高压电器》2016,(8):96-100
表面介质阻挡放电因能产生大面积均匀等离子体而被广泛研究及应用。然而多数研究致力于通过改变反应器对放电产生的等离子体参数进行优化。文中重点研究了介质表面粗糙度对沿面介质阻挡放电特性的影响,从介质表面态角度对产生的等离子体进行优化。石英玻璃作为阻挡介质在实验前经均匀机械研磨,并测量处理后的介质表面粗糙度指标Ra。实验结果发现:当放电产生的低温等离子体均匀分布于放电气隙时,表面粗糙度指标Ra为427.1 nm的介质的起始放电电压最低、平均放电功率最大、放电产生等离子体的电子激发温度最高。介质表面经不同程度研磨处理,能够有效改变表面介质阻挡放电产生的等离子体参数。在所制备的样品中,粗糙度指标Ra为427.1 nm的介质产生的等离子体参数相对更优。  相似文献   

3.
为了研究纳秒脉冲表面滑闪放电特性,本文采用一种新型三电极结构的激励器,通过纳秒脉冲叠加负直流的混合激励模式产生表面滑闪放电。实验研究了电压脉冲分量、电压直流分量及两者的差值对纳秒脉冲表面滑闪放电特性的影响。实验结果表明,当脉冲电压幅值固定时,直流电压幅值的改变对脉冲侧电流的影响较小,但对直流源侧电流却影响显著,直流源侧电流随直流电压幅值的增加而增加,发生表面滑闪放电后峰值和速度均增加。直流电压幅值越大,直流源侧电流出现时刻越早。当直流电压幅值固定时,脉冲侧电流和直流源侧电流均随着脉冲电压幅值的增加而增加。实验中存在一个电压阈值(脉冲分量和直流分量电压差值)使纳秒脉冲表面滑闪放电发生,该阈值为22k V。此时发生表面滑闪放电,瞬时功率峰值、单脉冲能量峰值和稳态能量均迅速增加。脉冲直流电压差值相同时,脉冲分量主导脉冲侧电流的大小,直流分量主导直流源侧电流的大小,脉冲分量所占比例的大小对功率和能量损耗的影响较大。此外,利用数码相机拍摄放电图像研究了纳秒脉冲表面滑闪放电的光学特性,放电图像表明,在电极间施加合理的脉冲电压和负直流电压均可产生表面滑闪放电,实现等离子体的拉伸效果,在阻挡介质表面获得大面积的等离子体。  相似文献   

4.
空气中纳秒脉冲均匀介质阻挡放电研究   总被引:3,自引:0,他引:3  
邵涛  章程  于洋  方志  徐蓉  严萍 《高电压技术》2012,38(5):1045-1050
大气压空气中均匀介质阻挡放电具有广泛的应用前景,实现均匀放电是介质阻挡放电应用关键之一,因而利用上升沿40ns,脉宽70ns的重复频率纳秒脉冲电源激励在大气压空气中产生介质阻挡放电,介绍了纳秒脉冲均匀介质阻挡放电的电特性和放电图像及放电发射光谱,获得了2ns曝光时间的高速摄影放电图像。发现空气中1mm气隙距离下可以实现均匀放电,气隙距离增加至4mm时放电转变为明显的丝状放电,通过观察发射光谱显示等离子体谱线主要是来自400nm以下的氮分子第二正系。结果证实了大气压空气中利用ns脉冲激励可以产生稳定介质阻挡放电,且能实现均匀放电,是典型非平衡态低温等离子体。  相似文献   

5.
表面介质阻挡放电(DBD)在气体流动控制方面有着巨大的应用前景。利用自制的纳秒和微秒脉冲电源进行表面DBD实验,比较了电压幅值、介质厚度、电极水平间距等对两种激励下表面DBD电特性的影响并进行了分析。实验中两种电源激励的表面介质阻挡放电能量均在mJ量级,上升沿瞬时最大功率达到几十kW。实验结果表明:在脉冲上升沿有多次放电,微秒脉冲上升沿放电次数比纳秒脉冲多;随着电压幅值上升,放电次数减少;介质越薄,放电越激烈,能量越大;电极水平间距对表面DBD放电有影响,间距0 mm时能量消耗最大;施加脉冲电压频率越大,放电等离子体的亮度越大;微秒脉冲放电的等离子体区域要大于纳秒脉冲放电。  相似文献   

6.
《高电压技术》2021,47(3):885-893
为了制备高能效、高活性且均匀稳定的大气压等离子体源,利用纳秒脉冲电源驱动氩气介质阻挡放电(dielectricbarrierdischarge,DBD),并添加H2O增强等离子体活性。通过电学及光学诊断方法,系统分析研究了H2O体积分数对放电特性的影响规律,并利用图像灰度标准差方法和等效电路模型方法,定量计算了放电均匀性和放电微观参量。结果表明,纳秒脉冲激励氩气DBD中H2O体积分数较低(0%~0.2%)时具有较好均匀性,当H2O体积分数升高后,其吸附电子引起空间电场畸变,产生明亮放电细丝导致放电均匀性降低,过量H2O添加会使放电熄灭;由于添加少量H2O可促进等离子体中电离过程,传输电荷、放电平均功率及能量效率随着H2O体积分数增加而增加,并在H2O体积分数为0.1%时达到极大值,之后随着H2O体积分数增加而减少。通过OH和Ar激发态粒子发射光谱强度表征等离子体活性,发现当H2O体积分数达到0.1%时,OH和Ar谱线强度达到最大,Ar激发态粒子发射光谱强度比值表明电子能量随着H2O体积分数增加而升高,在H2O体积分数为0.1%时达到最大值,之后降低。  相似文献   

7.
不同电极间距下纳秒脉冲表面介质阻挡放电分布特性   总被引:1,自引:0,他引:1  
电极间距是表面介质阻挡放电(SDBD)的一个重要结构参数。通过实验研究和仿真计算,研究电极间距对纳秒脉冲SDBD等离子体分布特性的影响,并从理论上分析类弥散和离散通道两种等离子体分布的形成机制。实验研究表明,电极间距是造成两种典型特性及不同等离子体分布的关键结构参数。通过对放电区域外电场的仿真计算发现,不同电极间距下外电场分布形态和数值的差异,是形成两种不同等离子体分布模式的直接原因。结合气体放电基本理论,分析认为:等离子体类弥散分布是由于流注前向发展和横向激发电离同时在起作用,而离散通道分布是因为流注通道以前向发展为主、横向电离作用较弱;两种等离子体分布模式形成的根本原因在于电场随时间的增大率和随空间的减小率以及流注通道的发展速度之间的匹配。  相似文献   

8.
为优化表面介质阻挡放电激励器的布局形式,基于ns脉冲表面介质阻挡放电快速放热诱导压缩波进行流动控制的原理,设计了具有平面和锯齿类型高压电极的激励器。在ns脉冲电压的驱动下,研究了其放电特性和激励器表面红外辐射温度特性,并比较了3种激励器的放电能量、峰值功率、峰值电流、表面红外辐射温度。结果表明:施加同样电压时,高压电极为锯齿形的激励器具有较高的放电电流、瞬时放电功率以及放电能量;3种激励器表面温度最高处均位于高、低压电极之间的介质表面处,且锯齿形激励器表面的局部最高红外辐射温度可达88℃,高于平面形激励器的72℃。从脉冲放电能量和表面红外辐射温度的角度验证了锯齿形激励器在流动控制上具有潜在优势,可供提升流动控制效果和优化激励器参考。  相似文献   

9.
大气压空气中纳秒脉冲介质阻挡放电均匀性的研究   总被引:3,自引:0,他引:3  
为了实现大气压空气中纳秒脉冲均匀介质阻挡放电(DBD),利用上升沿15ns,半高宽30~40ns的正极性纳秒脉冲激发DBD,并由电压电流和放电图像研究DBD的特性,分析均匀放电实现的条件和特征。实验结果表明放电电流呈双极性,且电气参数要比交流及微秒脉冲DBD的高,在一定条件下可获得均匀模式放电。通过重复频率和气隙距离对放电均匀性的影响研究发现,2mm空气间隙中,双层介质阻挡时重复频率对放电均匀性影响不明显,但当间隙距离从2~8mm延长时,放电明显由均匀模式向丝状模式过渡。此外,对纳秒脉冲DBD放电均匀性与施加脉冲上升沿的关系进行了探讨。  相似文献   

10.
纳秒脉冲介质阻挡放电特性及其聚合物材料表面改性   总被引:1,自引:0,他引:1  
介绍了大气压空气下纳秒脉冲介质阻挡放电(DBD)的特性及其对聚酰亚胺(PI)材料表面进行的亲水性改善。利用单极性纳秒脉冲激发大气压空气中DBD,通过电气特性测量和发光图像拍摄研究了纳秒脉冲DBD的特性,获得了均匀模式的放电,并分析了气隙距离对放电特性和均匀性的影响。利用大气压下均匀放电改性PI薄膜表面,对改性前后的薄膜表面进行水接触角、表面形态和表面成分分析,并与丝状放电的改性效果进行了比较。结果表明单极性纳秒脉冲DBD电流呈双极性,放电电流、介质电压和瞬时功率等随气隙距离的增大而减小,窄间隙条件下易获得均匀放电。经DBD处理后PI表面粗糙度明显增加,静态水接触角明显减小,亲水性含氧基团被引入,从而改善了薄膜表面亲水性,且均匀放电比丝状放电处理效果更为显著。  相似文献   

11.
为了研究大气压空气等离子体对绝缘材料表面改性的影响,采用介质阻挡放电对聚苯乙烯进行了表面改性。通过接触角测量仪、扫描电镜、原子力显微镜和X射线光电子能谱对处理前后表面润湿性、结构形貌和化学成分的观测。结果表明:处理后表面润湿性改善,表面微结构形貌粗糙化,表面发生氧化和氮化。增加表面粗糙度和引入含氧、含氮高结合能官能团是改善材料表面润湿性的主要原因。  相似文献   

12.
相对于体介质阻挡放电(VDBD),沿面介质阻挡放电(SDBD)等离子体可以更高效地生成反应活性物质,在气体处理方面显示了较高的效率。但沿面放电仅沿介质表面发展,限制了放电等离子体装置处理气体的能力。文中设计了一种新型的沿面/体复合DBD装置,通过在垂直于沿面放电高压电极的上部增加体放电电极,用于扩展等离子体的空间分布并提高活性物质的产量,研究了电极构型、放电气隙、放电电压及气体体积流量等对装置的放电特性及臭氧生成的影响。在空气间隙为4.5mm,外加电压幅值为16kV时,SDBD放电功率为11.2W,VDBD放电功率为4.6 W,复合装置的放电功率为19.7 W;分别测量复合装置中的沿面放电和体放电功率发现,复合装置的沿面放电功较单一沿面放电装置的放电功率提高了1.1倍,而复合装置的体放电功率较单一体放电功率提高了1.9倍。臭氧测试结果表明,复合装置生成的臭氧质量浓度可达3.0 mg/L,分别是SDBD和VDBD的3.8倍和5.0倍。  相似文献   

13.
空气条件下介质阻挡放电影响因素的研究   总被引:6,自引:7,他引:6  
为了解决低气压等离子体用于工业生产时存在真空系统昂贵和难以实现试品的批量处理等缺点,采用环氧树脂和聚四氟乙烯(PTFE)作为介质阻挡放电(DBD)的阻挡介质,探讨了在不同放电间距d(2-5 mm)、气压p(10-100 kPa)和外施电压U下的放电特性。结果表明,PTFE为阻挡介质,d≤3 mm时,在大气压下可利用DBD的形式产生辉光放电,当d>4 mm时,则不能得到稳定的DBD;在不同气压下,DBD稳定放电对应的电压区间范围在d为3 mm时最大;次大气压下辉光放电的特征较大气压下更明显,辉光放电更易获得,稳定放电的电压区间也更大。  相似文献   

14.
影响介质阻挡放电的因素   总被引:1,自引:4,他引:1  
李清泉  马磊 《高电压技术》2007,33(9):10-12,16
针对影响介质阻挡放电的因素较多,理论还不完全成熟的现状,通过试验研究了影响介质阻挡放电的部分因素,如施加电压的幅值、极板间气隙的间距、不同介电常数的阻挡介质、不同厚度的同一种介质、网眼大小不同的丝网、不同结构形式的极板结构。试验发现电极结构以及阻挡介质的材料对放电影响较大,采用针板电极及电阻率高的阻挡介质容易形成稳定的放电。该研究可供下一步进行其它影响因素的试验和理论研究及应用参考。  相似文献   

15.
王辉  方志  邱毓昌 《高压电器》2004,40(5):321-323
通过电压-电流波形和电压-电荷李萨育图的测量,研究了空气中多针-平板电极介质阻挡放电特性,比较了这种放电和平板-平板电极介质阻挡放电的区别,并通过接触角测量比较了这两种形式放电对聚四氟乙烯(PTFE)进行表面改性的效果。结果表明:在相同的条件下,与平板-平板电极介质阻挡放电相比,多针-平板电极介质阻挡放电空间能产生更多的活性粒子;用这种放电对PTFE进行表面改性,能在更短的时间内获得和平板-平板电极介质阻挡放电相同的效果。  相似文献   

16.
常压介质阻挡放电平均放电电流的实验研究   总被引:1,自引:2,他引:1  
庄凤芝  蔡忆昔  王军  王静 《高电压技术》2008,34(10):2140-2144
为了优化介质阻挡放电(DBD)发生器设计,提高放电效率,实验研究了介质阻挡放电装置的平均放电电流特性,包括用Q-U李萨如图形测量法研究了激励电源特性和发生器结构参数对平均放电电流的影响。实验结果表明:采用高频电源、薄介质和小放电间隙可得到均匀放电;在DBD发生器结构和工作气体属性固定的情况下,提高激励电压幅值和激励频率可增大平均放电电流、提高放电强度;采用薄介质和减小放电气隙宽度都可提高放电强度,得到较大的平均放电电流。因此可以通过改变激励电源参数和放电装置结构有效地调节放电电流。  相似文献   

17.
介质阻挡放电影响因素分析   总被引:18,自引:6,他引:18  
罗毅  方志  邱毓昌  王辉 《高压电器》2004,40(2):81-83
对影响介质阻挡放电的因素加以研究,可以在实际应用中优化反应器设计,提高放电效率。通过在实验室建立的放电装置研究了外加电压幅值、气体间隙距离及作为阻挡层的介质材料性质对介质阻挡放电的影响。对试验结果的分析,为获得较大功率的介质阻挡放电提供了实验基础。  相似文献   

18.
基于Q-V Lissajous图形法的介质阻挡放电试验研究   总被引:2,自引:0,他引:2  
为了解介质阻挡放电(DBD)在不同激励电压峰值VP-P和介质厚度ld下的放电特性,通过建立介质阻挡放电试验系统,采用Q-V Lissajous图形法研究了激励电压峰值VP-P、介质厚度ld对DBD主要放电参量的影响.研究表明:增大激励电压峰值VP-P、减小介质厚度ld可提高放电功率P、单周期电荷传输量Q、气隙有效电场强度Eg和气隙折合电场强度E/n.固定介质厚度ld,增大激励电压峰值VP-P,介质等效电容Cd增大,气隙等效电容Cg减小,但放电熄灭阶段总电容C变化不明显.固定激励电压峰值VP-P,增大介质厚度ld,放电熄灭阶段总电容C和介质等效电容Cd减小,气隙等效电容Cg增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号