首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 109 毫秒
1.
为了进一步了解大气压氩气介质阻挡放电的机理和放电特征,采用平行电极结构的介质阻挡放电装置,研究了大气压氩气的放电模式、回路电流、发射光谱、电子温度等特性,对比分析了不同放电模式的特性差异。实验发现,随着电压升高,放电由局部的均匀放电过渡到斑图放电模式,最后演化为布满整个电极的伪均匀放电;Ar主要强度谱线与放电电流近似同步,证明电子碰撞电离是氩气放电电离的主要方式;放电过程中发射光谱强度及电子激发温度不是随外加电压升高而增大,而与放电模式有关;柱状斑图放电的电子激发温度远高于其他模式;电子激发温度随外加电压变化的趋势与放电功率密度一致。  相似文献   

2.
基于介质阻挡放电的形式,设计并制作了两种等离子体射流装置:一种内电极裸露;另一种内电极覆盖有石英玻璃。笔者对两种不同电极等离子体射流装置的特性进行了测量。在中频正弦电源通入Ar的情况下,测量了放电的李萨如(Lissajous)图、放电的图像和放电的光谱图;并且分别由放电的Lissajous图和光谱图,计算得到了放电的功率和电子激发温度。实验结果表明:在外施电压保持不变的情况下,气流对于放电的功率和电子的温度几乎没有影响;通过对比两种射流装置的电学和光学特性发现,与内电极覆盖有石英玻璃的等离子体射流装置相比,内电极裸露的情况下,其放电的功率和电子激发温度均比较大。  相似文献   

3.
介质阻挡放电等离子体中的电子碰撞能量转换过程   总被引:2,自引:1,他引:1  
通过计算建立的介质阻挡放电等离子体动力学模型,分析了等离子体中电子碰撞过程中的电子能量转换过程,为掌握等离子体强化燃烧机理奠定基础.结果表明:介质阻挡放电等离子体中的电子能量分布函数主要受约化场强的影响;随着约化场强的变化,电子能量损失于不同碰撞类型的比例不同,且在实验中常用的100~300Td之间,电子能量主要损失于...  相似文献   

4.
介质阻挡放电旋转同心圆环斑图的研究   总被引:1,自引:0,他引:1  
介质阻挡放电(DBD)实验中观察到了旋转同心圆环斑图。为研究斑图中点的运动状态与DBD参数之间的关系,采用高速录像机短曝光拍照、发射光谱分析及理论模拟等方法研究了DBD放电的旋转同心圆环斑图。斑图由中心点、内圈圆环点和外圈圆环点组成;内外圈圆环上的点均旋转,但具有不同的速度;随着压强的升高,各点旋转速度增大。高速录像机以1个周期为曝光时间拍摄的照片显示,发现每个点均由明亮的体放电和丝状的沿面放电组成。发射光谱分析显示:随着气体压强从30 k Pa增大到50 k Pa时,旋转同心圆环中心点、内圈圆环点和外圈圆环点处的分子振动温度、电子平均能量均降低,而电子密度均增高。通过对旋转同心圆环斑图中体放电电流积分,结合着光谱测量的电子密度,模拟了旋转同心圆环斑图中体放电产生的壁电荷的电势,结果表明沿面放电对放电丝的旋转速度有重要影响。  相似文献   

5.
针对平行平板型大气压氩气介质阻挡放电(DBD),考虑等离子体中电子能量的贡献,建立了一维多粒子流体模型。通过对模型的求解,详细分析了频率为10 k Hz、幅值为1.5k V正弦电压驱动放电的变化过程,包括放电等离子体中各特性参数,如电子数密度、亚稳态氩原子数密度、放电间隙电位和电子温度等的时空变化过程。结果发现:放电模式从Townsend放电转变为稳定的辉光放电,在辉光放电阶段,放电间隙存在明显的阴极位降区、阴极辉区、Faraday暗区和正柱区等特征区域,且电子能量在不同的放电阶段有着不同的能量损失渠道。与此同时,探讨了固定驱动频率为10 k Hz,不同电压幅值的情况下,放电等离子体的粒子特性参数及放电模式。结果表明:电压从1.5 k V提高到3.5 k V时,最高电子温度、电子数密度、正离子数密度和亚稳态氩原子数密度均有所提高;简单分析了2.5 k V电压,不同频率下的电流波形和各种粒子在电流脉冲峰值处的空间分布,发现50 k Hz和100 k Hz的情况下,放电间隙阳极出现了阳极辉区;第一个电流脉冲峰值时刻,放电正柱区覆盖了Faraday暗区,而第二个宽电流脉冲时刻,法拉第暗区又重新出现。  相似文献   

6.
由于介质阻挡放电具有许多独特的性质,已被广泛地应用于等离子体化学、环境工程及材料表面处理等诸多领域。为了对其进行更好的研究与应用,笔者根据介质阻挡放电中的不同能量传递过程,建立了一个包括电子碰撞激发、离解、电离,吸附和解吸,复合以及中性粒子参与的反应等过程的N2-O2介质阻挡放电化学反应动力学模型,并通过求解Boltzmann方程,得到电子能量分布函数,进而通过计算获得了电子—分子碰撞的反应速率系数。代入速率方程,获得了系统中各组分粒子数浓度随时间的变化规律。结果表明:O、O3以及N2和O2分子激发态的粒子数浓度随时间先增加后减小,最后趋于一定值;O原子粒子数浓度受N2激发态分子的影响较大;O原子粒子数浓度随O2体积分数的降低而增加。  相似文献   

7.
介质阻挡放电和介质阻挡电晕放电灭菌效果的试验研究   总被引:2,自引:0,他引:2  
石兴民  袁网  董晓锋  孙岩洲  邱毓昌 《高压电器》2006,42(2):120-121,124
应用介质阻挡放电(DBD)和介质阻挡电晕放电 (DBCD)产生的低温等离子体,对金黄色葡萄球菌和大肠杆菌进行杀灭试验的结果发现,在90s内DBD和DBCD都对金黄色葡萄球菌和大肠杆菌的杀灭对数值KL达到了5。 DBCD使两种菌株减少的速度大于DBD。DBD和DBCD都使大肠杆菌减少的速度大于金黄色葡萄球菌。  相似文献   

8.
常压空气介质阻挡放电的能量传递过程   总被引:1,自引:4,他引:1  
利用发射光谱技术分析空气等离子体中可能存在的化学活性物质,并通过分析空气等离子体中氮气、氧气常见激发态的产生和猝灭过程,结合其动力学数据,计算分析了常压空气介质阻挡放电中的能量传递过程。结果表明,氮分子和原子的激发态很快通过与分子、原子间的碰撞而猝灭掉或被氧分子、原子氧化而生成氮氧化合物,氧分子的激发态由于其本身的跃迁几率太小,所以没有测到氧气的发射光谱;放电系统中的电子能量很少有17.0 eV的,但存在能量11.03 eV的电子,与计算得到的电子能量分布一致;约化场强E/N150 Td时,电子与氮分子激发、离解碰撞的能量损失占电子碰撞能量损失的50%以上;氮分子、原子激发态的存在可以提高O、O3以及一些氮氧化合物的粒子数浓度。  相似文献   

9.
电子碰撞电离系数α是气体放电研究中的一个重要物理参数,但现有的α系数数值都是在低气压Townsend放电实验中得到的,它们不适用于大气压下气体放电。为了尝试解决这个问题,提出了一种大气压下α系数的光学测量方法,它借助介质阻挡电极结构,在某些大气压气体中产生瞬态或稳态Townsend放电,利用带像增强器高速数码相机的纳秒曝光功能,记录气隙中瞬态发光强度空间分布,并与Townsend放电对应的理论发光强度分布进行比较,根据两者的最佳拟合效果推导出α系数。该方法被用于测定大气压氮气α系数,结果表明其基本可行,但仍需继续加以完善。  相似文献   

10.
影响介质阻挡放电的因素   总被引:1,自引:4,他引:1  
李清泉  马磊 《高电压技术》2007,33(9):10-12,16
针对影响介质阻挡放电的因素较多,理论还不完全成熟的现状,通过试验研究了影响介质阻挡放电的部分因素,如施加电压的幅值、极板间气隙的间距、不同介电常数的阻挡介质、不同厚度的同一种介质、网眼大小不同的丝网、不同结构形式的极板结构。试验发现电极结构以及阻挡介质的材料对放电影响较大,采用针板电极及电阻率高的阻挡介质容易形成稳定的放电。该研究可供下一步进行其它影响因素的试验和理论研究及应用参考。  相似文献   

11.
研究了平板-平板电极和线-管电极两种电极结构的放电特性,通过测量电压-电流波形图及放电发光图比较了它们的区别,并从放电机理角度对试验结果做出了解释。结果表明,平板-平板电极介质阻挡放电表现为微放电脉冲形式,而线-管电极结构介质阻挡电晕放电由于线电极的电晕效应,使得放电更为稳定。  相似文献   

12.
研究了平板-平板电极和线-管电极两种电极结构的放电特性,通过测量电压-电流波形图及放电发光图比较了它们的区别,并从放电机理角度对试验结果做出了解释。结果表明,平板-平板电极介质阻挡放电表现为微放电脉冲形式,而线-管电极结构介质阻挡电晕放电由于线电极的电晕效应,使得放电更为稳定。  相似文献   

13.
王辉  方志  孙岩洲  邱毓昌 《高压电器》2006,42(2):128-130
实验研究和比较了管-管电极DBD和线-管电极 DBCD的放电特性,并从放电机理角度分析了它们放电特性不同的原因。电压-电流波形图、电压-电荷李萨育图形测量和发光图像拍摄的结果表明:线-管电极DBCD相对均匀、稳定,不同于管-管电极DBD明显的丝状流注放电的形式; 在相同的外加电压下,线-管电极DBCD比管-管电极DBD 具有更高的能量效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号