首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents a novel method to quasi-omnidirectional control of an intelligent inspection robot designed to work inside and outside spherical storage tanks. The main objective is to promote a stable and smooth navigation during inspection tasks, ensuring the safety motion under adhesion and kinematic constraints. The robot is designed with four independent steerable magnetic wheels and a mechanical topology that allows the correct adjustment of adhesion system. A scheduled Fuzzy control is developed to achieve an optimal behavior and maximize the robot’s maneuverability, considering the magnetic restrictions of adhesion system and kinematic constraints of the inspection robot. The high adaptability of its mechanical topology (i.e., wheel misalignment, magnetic adhesion system, wheel camber and flexibilities in mechanical structure) and gravitational disturbance introduce many nonlinear characteristics in dynamic behavior that cannot be neglected, making the determination of its dynamic model a complex task. The Fuzzy approach allows to project a control system without a depth knowledge of its dynamic properties, to minimize the dynamic disturbances found in robot structure. Thus, the proposed motion control works according to the robot specific characteristics to ensure the quasi-omnidirectional motion over a reliable adhesion to tank surface and to minimize the effects of wheels kinematic constraints.  相似文献   

2.
通过对高压输电线路中耐张杆塔部分的电磁场进行理论和试验分析,根据电磁场的分布规律对导航电磁传感器的布置进行试验研究,提出了相应的控制对策,根据对策编制控制程序;通过传感器测定紧耐张线夹的压接部分离夹爪的距离,实现了机器人在三维空间的定位和夹紧,完成自主穿越耐张杆塔;试验表明采用传感器补偿算法的控制程序,巡线机器人自主穿越耐张杆塔障碍是可行的。  相似文献   

3.
通过对高压输电线路中耐张杆塔的电磁场进行理论和试验分析,根据电磁场的分布规律对导航电磁传感器的布置进行试验研究,提出了采用传感器补偿算法的控制对策。试验表明:采用传感器补偿算法的控制对策,巡线机器人自主穿越耐张杆塔障碍是可行的。  相似文献   

4.
基于结构约束的架空输电线路巡线机器人障碍识别   总被引:3,自引:0,他引:3  
巡线机器人沿相线行走时必须探测识别各种障碍,并根据障碍类型规划越障行为.针对220 kV架空输电线路的结构特点,利用视觉传感器,设计了基于结构约束的障碍识别算法.算法利用图像的边缘信息,采用改进的基于存在概率图的圆/椭圆检测方法和分层决策机制,以减少自然环境中光线变化和机器人运动对识别质量的影响,满足了巡线机器人的实时越障要求.实验室模拟线路和实际线路实验结果表明,算法能可靠地识别出复杂背景中的防震锤、悬垂线夹和耐张线夹等障碍物.  相似文献   

5.
Physical guidance is a natural interaction capability that would be beneficial for mobile robots. However, placing force sensors at specific locations on the robot limits where physical interaction can occur. This paper presents an approach that uses torque data from four compliant steerable wheels of an omnidirectional non-holonomic mobile platform, to respond to physical commands given by a human. The use of backdrivable and torque-controlled elastic actuators for active steering of this platform intrinsically provides the capability of perceiving applied forces directly from its locomotion mechanism. In this paper, we integrate this capability into a control architecture that allows users to force-guide the platform with shared-control ability, i.e., having the platform being guided by the user while avoiding obstacles and collisions. Results using a real platform demonstrate that user’s intent can be estimated from the compliant steerable wheels, and used to guide the platform while taking nearby obstacles into consideration.  相似文献   

6.
钱钧  杨汝清  翁新华  刘红星 《机器人》2006,28(6):571-575
介绍了一种应用于城区环境的消防侦察机器人.它采用具有关节链轮的差动轮式结构,适于爬楼梯和斜坡.采用实时泄漏补偿方式维持车体内具有恒定正压,确保机器人的防爆安全性能.在失去无线控制信号时,机器人根据侦察过程中记录的传感器数据,按原路径返回,并自动回撤到安全区域.由于使用单一的编码器获得的位置信息具有累积误差,本文采用新颖的编码器与超声波传感器数据集成的方法,并使用迭代最近点算法进行数据匹配,调整机器人的位置和方向角,获得了较高的自动回撤精度.  相似文献   

7.
In this paper we present the mechanical and control design of a magnetic tracked mobile robot. The robot is designed to move on vertical steel ship hulls and to be able to carry 100 kg payload, including its own weight. The mechanical components are presented and the sizing of the magnetic tracks is detailed. All computation is embedded in order to reduce time delays between processes and to keep the robot functional even in case of signal loss with the ground station. The main sensor of the robot is a 2D laser scanner, that gives information on the hull surface and is used for several tasks. We focus on the welding task and expose the control algorithm that allows the robot to follow a straight line for the welding process.  相似文献   

8.
The threat to safety of aging bridges has been recognized as a critical concern to the general public due to the poor condition of many bridges in the United States. Currently, the bridge inspection is conducted manually, and it is not efficient to identify bridge condition deterioration in order to facilitate implementation of appropriate maintenance or rehabilitation procedures. In this paper, we report a new development of the autonomous mobile robotic system for bridge deck inspection and evaluation. The robot is integrated with several nondestructive evaluation (NDE) sensors and a navigation control algorithm to allow it to accurately and autonomously maneuver on the bridge deck to collect visual images and conduct NDE measurements. The developed robotic system can reduce the cost and time of the bridge deck data collection and inspection. For efficient bridge deck monitoring, the crack detection algorithm to build the deck crack map is presented in detail. The impact‐echo (IE), ultrasonic surface waves (USW), and electrical resistivity (ER) data collected by the robot are analyzed to generate the delamination, concrete elastic modulus, corrosion maps of the bridge deck, respectively. The presented robotic system has been successfully deployed to inspect numerous bridges in more than ten different states in the United States.  相似文献   

9.
一种输电线路巡检机器人控制系统的设计与实现   总被引:2,自引:0,他引:2  
介绍了一种超高压输电线路巡检机器人控制系统的设计与实现方法.根据巡检作业任务的要求,采用遥控与局部自主相结合的控制模式实现巡检机器人沿线行走及跨越障碍.设计了巡检机器人有限状态机模型,实现了机器人遥控与局部自主控制的有机结合.采用基于激光传感器定位的方法实现了巡检机器人的自主越障控制.实验结果表明,该机器人可实现沿线行走及自主跨越障碍,从而验证了控制系统设计的有效性与合理性.  相似文献   

10.
One of the important advantages of an active wheeled snake-like robots is that it can access narrow spaces which are inaccessible to other types of robot (such as crawlers, walking robots), since snake-like robots have an elongated, narrow body. Additionally, in areas with rubble, snake-like robots can traverse rough terrain and large obstacles since its body can conform to the terrain’s contours. ‘ACM-R8’ is a new snake-like robot which can climb stairs and reach doorknobs in addition to the features explained above. To fulfill these functions, the design of this robot incorporates several key features: joints with parallel link mechanism, mono-tread wheels with internal structure, force sensors and ‘swing-grousers’ which were developed to improve step climbability. In this paper, the design and control methods are described. Experiments confirmed high mobility on stairs and steps, with the robot succeeding in overcoming a step height of 600 mm, despite the height of the robot being just 300 mm.  相似文献   

11.
The paper discusses the redesign of the second version of the Mantis hybrid leg-wheel mobile robot, conceived for surveillance and inspection tasks in unstructured indoor and outdoor environments. This small-scale ground mobile robot is characterized by a main body equipped with two front actuated wheels, a passive rear axle and two rotating legs. Motion on flat and even ground is purely wheeled in order to obtain high speed, high energetic efficiency and stable camera vision; only in case of obstacles or ground irregularities the front legs realize a mixed leg-wheel locomotion to increase the robot climbing ability; in particular, the outer profile of the legs, inspired by the praying mantis, is specially designed to climb square steps. The multibody simulations and the experimental tests on the first prototype have shown the effectiveness of the mixed leg-wheel locomotion not only for step climbing, but also on uneven and yielding terrains. Nevertheless, extensive experimental tests have shown that the front wheels may slip in the last phase of step climbing in case of contact with some materials. In order to overcome this problem, the leg design has been modified with the introduction of auxiliary passive wheels, which reduce friction between legs and step upper surface; these wheels are connected to the legs by one-way bearings, in order to rotate only when they are pulled by the front wheels, and remaining locked when they have to push forward the robot. The influence of the auxiliary wheels on the front wheels slippage is investigated by means of theoretical analysis and multibody simulations.  相似文献   

12.
针对传统油罐检定方法中,径向偏差测量精度低、操作危险、效率低等问题,研制一种小型的立式金属罐爬壁检定机器人。该机器人采用永磁吸附三轮式结构,测控系统以单片机89S51为核心,并配备多种传感器,实施有缆遥控操作。现场实验表明,该机器人自动化程度高,径向偏差测量准确,大幅度提高了油罐检定效率和检定精度。  相似文献   

13.
石油化工车间风险高且工作人员活动空间狭窄,大型巡检设备无法进入场地;设计开发一款智能巡检机器人代替工作人员对危险环境进行巡检,与原有的固定位置传感器相配合,以降低事故发生率,保证生产安全;该巡检机器人以DSP为核心控制器,利用A*算法规划巡检路径;通过旋转编码器与MPU6050配合智能算法实现自动循迹;搭载各类环境传感器,实时监测车间环境;使用C++Builder设计人机交互界面;利用WiFi模块实现机器人与上位机的数据实时互传;测试结果表明,可以实现对机器人速度和位置的精确控制,并能准确、实时地显示甲烷、一氧化碳等危险气体浓度变化,对危险提前预警,提醒工作人员处理。  相似文献   

14.
直进轮式全驱动管内行走机构的研究   总被引:13,自引:5,他引:8  
邓宗全  王杰 《机器人》1995,17(2):121-122
本文提出了一种新的管内行走机构,它利用一个电机同时驱动均布在机架上并与管内壁用弹簧力相封闭的6个行进轮,从而实现了可以轴向进直全驱动的管内行走,该机构结构紧凑,驱动效率高,制造容易,安装方便,工作可靠。  相似文献   

15.
电梯导轨垂直度检测机器人运行机构设计   总被引:2,自引:0,他引:2  
张浩  赵群飞  黄捷  马培荪 《机器人》2006,28(3):241-244
为实现电梯导轨垂直度检测自动化,设计了电梯导轨垂直度检测机器人.采用多磁轮吸附机构和下滑制动机构,实现了机器人在竖直导轨上的安全自主运行.其中的顶磁路和导向磁轮采用了优化的磁路结构设计.不同条件下的吸附力测试表明,设计的磁轮能够适应恶劣工况.  相似文献   

16.
Seagoing vessels have to undergo regular inspections, which are currently performed manually by ship surveyors. The main cost factor in a ship inspection is to provide access to the different areas of the ship, since the surveyor has to be close to the inspected parts, usually within arm's reach, either to perform a visual analysis or to take thickness measurements. The access to the structural elements in cargo holds, e.g., bulkheads, is normally provided by staging or by “cherry‐picking” cranes. To make ship inspections safer and more cost‐efficient, we have introduced new inspection methods, tools, and systems, which have been evaluated in field trials, particularly focusing on cargo holds. More precisely, two magnetic climbing robots and a micro‐aerial vehicle, which are able to assist the surveyor during the inspection, are introduced. Since localization of inspection data is mandatory for the surveyor, we also introduce an external localization system that has been verified in field trials, using a climbing inspection robot. Furthermore, the inspection data collected by the robotic systems are organized and handled by a spatial content management system that enables us to compare the inspection data of one survey with those from another, as well as to document the ship inspection when the robot team is used. Image‐based defect detection is addressed by proposing an integrated solution for detecting corrosion and cracks. The systems' performance is reported, as well as conclusions on their usability, all in accordance with the output of field trials performed onboard two different vessels under real inspection conditions.  相似文献   

17.
For a humanoid robot to safely walk in unknown environments, various sensors are used to identify the surface condition and recognize any obstacles. The humanoid robot is not fixed on the surface and the base/orientation of the kinematics change while it is walking. Therefore, if the foot contact changes from the estimated due to the unknown surface condition, the kinematics results are not correct. The robot may not be able to perform the motion commands based on the incorrect surface condition. Some robots have built-in range sensors but it’s difficult to accurately model the surface from the sensor readings because the movement of the robot should be considered and the robot localization should have zero error for correct interpretation of the sensor readings. In this paper, three infrared range sensors are used in order to perceive the floor state. Covariance analysis is incorporated to consider the uncertainties. The accelerometer and gyro sensor are also used in order to detect the moment a foot hits the surface. This information provides correction to the motion planner and robot kinematics when the environment is not modeled correctly.  相似文献   

18.
近几年来,解魔方的机器人层出不穷,就目前的解魔方机器人,都存在不稳定、成本高、体积庞大等缺陷,本文对此研发一种新型的符合大众的解魔方机器人。魔方机器人的设计运用到的知识比较广,包含机械设计、系统控制、视觉检测、算法等。能将任意打乱的三阶魔方以最短的时间还原,整体设计结构由摄像头、二指机械臂等组成;摄像头获取图像传输给上位机处理,由STM32F103C8T6最小系统控制机械臂手指的转动。在满足低成本的情况下,实现比人计算更快,更精准地还原魔方。  相似文献   

19.
为能够高效、高精度的获取大型自由曲面物体的形貌,研究了基于通用工业机器人和激光线扫描传感器的测量方法。论述了激光线扫式形貌测量系统的原理与结构,利用标准球及优化算法实现了机器人和激光扫描传感器位姿关系的精确解算,并针对机器人运动学误差对系统测量影响较大,通过对机器人运动学参数的修正有效减小了机器人的绝对定位误差。实验和分析结果表明,经标定和运动学参数校正后的测量系统对标准球的测量能达到较高精度,为采集高精度三维点云提供了保证。  相似文献   

20.
超高压输电线路巡检机器人越障控制问题的研究   总被引:12,自引:4,他引:8  
付双飞  王洪光  房立金  姜勇 《机器人》2005,27(4):341-345
给出了一种超高压输电线路巡检机器人控制系统的设计与实现方法.根据机器人的作业任务,提出了基于传感器信息、约束信息以及动作反馈信息作为输入,产生式系统作为动作输出的越障控制方式.仿真结果表明此方法对于机器人的越障过程是有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号