首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(Bi0.5Na0.5)0.94Ba0.06TiO3 + x wt% Dy2O3 with x = 0-0.3 ceramics were synthesized by conventional solid-state processes. The effects of Dy2O3 on the microstructure, the piezoelectric and dielectric properties were investigated. X-ray diffraction pattern confirmed that the coexistence of tetragonal and rhombohedral phases in the (Bi0.5Na0.5)0.94Ba0.06TiO3 composition was not changed by adding 0.05-0.3 wt% Dy2O3. SEM images indicate that all the ceramics have pore-free microstructures with high density, and that doping of Dy2O3 inhibits the grain growth of the ceramics. The addition of Dy2O3 shows the double effects on decreasing the piezoelectric and dielectric properties for 0 < x < 0.15 when Dy3+ ions substitute B-site Ti4+ ions, and increasing the properties for 0.15 < x < 0.3 when Dy3+ ions enters into A-site of the perovskite structure. The optimum electric properties of piezoelectric constant d33 = 170 pC/N and the dielectric constant ?r = 1900 (at a frequency of 1 kHz) are obtained at x = 0.3.  相似文献   

2.
(1 − x)K0.02Na0.98NbO3-xBaTiO3 ceramics were prepared by the solid state reaction method, and their electrical properties were investigated. The samples showed crystal structure changing from monoclinic to orthorhombic, and then to tetragonal, with an increase in BaTiO3 content. The addition of BaTiO3 markedly enhanced ferroelectric and piezoelectric properties of K0.02Na0.98NbO3 ceramics. Remnant polarization increased and coercive field decreased only in the samples with small amount of BaTiO3. Piezoelectric properties were improved with the addition of BaTiO3. The 0.9K0.02Na0.98NbO3-0.1BaTiO3 ceramics showed maximum piezoelectric constant (d33 = 160 pC/N), which was even comparable with that of (1 − x)K0.5Na0.5NbO3-xBaTiO3 ceramics. Their good piezoelectric properties, along with a low ferroelectric-ferroelectric transition temperature (TF-F), made the 0.9K0.02Na0.98NbO3-0.1BaTiO3 ceramics a potential candidate for lead-free piezoelectric applications.  相似文献   

3.
Lead-free (1 − x − y)Bi0.5Na0.5TiO3-xBaTiO3-yBi0.5Ag0.5TiO3 (BNT-BT-BAT-x/y, x = 0-0.10, y = 0-0.075) piezoelectric ceramics were synthesized by conventional oxide-mixed method. The microstructure, ferroelectric, and piezoelectric properties of the ceramics were investigated. Results show that a morphotropic phase boundary (MPB) between rhombohedral and tetragonal phases of BNT-BT-BAT-x/0.04 ceramics is formed at x = 0.06-0.08. The addition of BAT has no obvious change on the crystal structure of BNT-BT ceramics while it causes the grain size of the ceramics to become more homogenous. Near the MPB, the ceramics with x = 0.06 and y = 0.05-0.06 possess optimum electrical properties: Pr ∼ 42.5 μC/cm2, Ec ∼ 32.0 kV/cm, d33 ∼ 172 pC/N, kp ∼ 32.6%, and kt ∼ 52.6%. The temperature dependences of kp and polarization versus electric hysteresis loops reveal that the depolarization temperature (Td) of BNT-BT-BAT-0.06/y ceramics decreases with increasing y. In addition, the polar and non-polar phases may coexist in the BNT-BT-BAT-x/y ceramics above Td.  相似文献   

4.
Lead-free (1 − x)Bi0.47Na0.47Ba0.06TiO3-xKNbO3 (BNBT-xKN, x = 0-0.08) ceramics were prepared by ordinary ceramic sintering technique. The piezoelectric, dielectric and ferroelectric properties of the ceramics are investigated and discussed. The results of X-ray diffraction (XRD) indicate that KNbO3 (KN) has diffused into Bi0.47Na0.47Ba0.06TiO3 (BNBT) lattices to form a solid solution with a pure perovskite structure. Moderate additive of KN (x ≤ 0.02) in BNBT-xKN ceramics enhance their piezoelectric and ferroelectric properties. Three dielectric anomaly peaks are observed in BNBT-0.00KN, BNBT-0.01KN and BNBT-0.02KN ceramics. With the increment of KN in BNBT-xKN ceramics, the dielectric anomaly peaks shift to lower temperature. BNBT-0.01KN ceramic exhibits excellent piezoelectric properties and strong ferroelectricity: piezoelectric coefficient, d33 = 195 pC/N; electromechanical coupling factor, kt = 58.9 and kp = 29.3%; mechanical quality factor, Qm = 113; remnant polarization, Pr = 41.8 μC/cm2; coercive field, Ec = 19.5 kV/cm.  相似文献   

5.
Lead-free piezoelectric ceramics (0.8 − x)BaTiO3-0.2Bi0.5Na0.5TiO3-xBaZrO3 (BT-BNT-xBZ, 0 ≤ x ≤ 0.08) doped with 0.3 wt% Li2CO3 were prepared by conventional solid-state reaction method. With the Li2CO3 doping, all the ceramics can be well sintered at 1170-1210 °C. The phase structure, dielectric, ferroelectric and piezoelectric properties of the ceramics were investigated. Results show that a morphotropic phase boundary (MPB) between tetragonal and pseudocubic phases exists at x = 0.03-0.04. The addition of Zr can improve the piezoelectric properties of BT-BNT ceramics. Furthermore, a relaxor behavior is induced and the tetragonal-cubic phase transition shifts towards lower temperatures after the addition of Zr. The ceramics with x = 0.03 possess the optimum electrical properties: d33 = 72 pC/N, kp = 15.4%, ?r = 661, Pr = 18.5 μC/cm2, Ec = 34.1 kV/cm, Tc = 150 °C.  相似文献   

6.
The effect of the composition on the electrical properties of BaBi1−xSbxO3 (0 ≤ x ≤ 0.5) negative temperature coefficient (NTC) thermistors was studied. Major phases present in the sintered bodies of BaBi1−xSbxO3 (0 < x < 0.5) ceramics were BaBi0.5Sb0.5O3 compounds with a rhombohedral structure and BaBiO3 compounds with a monoclinal structure. Most pores were located in the grains of BaBiO3 and BaBi0.5Sb0.5O3 ceramics. It was apparent that the ρ25 and B25/85 constant of the thermistors increased with increasing Sb content.  相似文献   

7.
Plate-like NaNbO3 (NN) particles were used as the raw material to fabricate (1 − x)[0.93 K0.48Na0.52Nb O3-0.07Li(Ta0.5Nb0.5)O3]-xNaNbO3 lead-free piezoelectric ceramics using a conventional ceramic process. The effects of NN on the crystal structure and piezoelectric properties of the ceramics were investigated. The results of X-ray diffraction suggest that the perovskite phase coexists with the K3Li2Nb5O15 phase, and the tilting of the oxygen octahedron is probably responsible for the evolution of the tungsten-bronze-typed K3Li2Nb5O15 phase. The Curie temperature (TC) is shifted to lower temperature with increasing NN content. (1 − x)[0.93 K0.48Na0.52NbO3-0.07Li(Ta0.5Nb0.5)O3]-xNaNbO3 ceramics show obvious dielectric relaxor characteristics for x > 0.03, and the relaxor behavior of ceramics is strengthened by increasing NN content. Both the electromechanical coupling factor (kp) and the piezoelectric constant (d33) decrease with increasing amounts of NN. 0.01-0.03 mol of plate-like NaNbO3 in 0.93 K0.48Na0.52NbO3-0.07Li(Ta0.5Nb0.5)O3 gives the optimum content for preparing textured ceramics by the RTGG method.  相似文献   

8.
The structure, ferroelectric and magnetic properties of (1 − x)BiFeO3-xBi0.5Na0.5TiO3 (x = 0.37) solid solution fabricated by a sol-gel method have been investigated. X-ray diffraction and Raman spectroscopy measurements show a single-phase perovskite structure with no impurities identified. Compared with pure BiFeO3, the coexistence of ferroelectricity and ferrimagnetism have been observed at room temperature for the solution with remnant polarization Pr = 1.41 μC/cm2 and remnant magnetization Mr = 0.054 emu/g. Importantly, a magnetic transition from ferrimagnetic (FM) ordering to paramagnetic (PM) state is observed, with Curie temperature TC ∼ 330 K, being explained in terms of the suppression of cycloid spin configuration by the structural distortion.  相似文献   

9.
The ternary system (1 − x − y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBi0.5Li0.5TiO3 (abbreviated to BNKLT-x/y) was synthesized by conventional oxide-mixed method. The phase structure, microstructure, and dielectric, ferroelectric and piezoelectric properties of the ceramics were investigated. The X-ray diffraction patterns showed that pure perovskite phase with rhombohedral structure can be obtained in all the ceramics. The grain size varied with x and y. The temperature dependence of dielectric constant and dielectric loss revealed there were two phase transitions which were from ferroelectric (tetragonal) to anti-ferroelectric (rhombohedral) and anti-ferroelectric to paraelectric (cubic). Either increasing x or y content can make Tm (the temperature at which dielectric constant r reaches the maximum) increase. With the addition of Bi0.5K0.5TiO3, the remanent polarization Pr increased but the coercive field Ec decreased. With the addition of Bi0.5Li0.5TiO3, Pr increased obviously and Ec increased slightly. Due to the stronger ferroelectricity by modifying Bi0.5K0.5TiO3 and Bi0.5Li0.5TiO3, the piezoelectric properties were enhanced at x = 0.22 and y = 0.10, which were as follows: Pr = 31.92 μC/cm2, Ec = 32.40 kV/cm, r = 1118, tan δ = 0.041, d33 = 203 pC/N and Kp = 0.31. The results show that the BNKLT-x/y ceramics are promising candidates for the lead-free materials.  相似文献   

10.
(1 − x)ZnMoO4-xTiO2 (x = 0.0, 0.05, 0.158, 0.25, and 0.35) composite ceramics were synthesized by the conventional solid state reaction process. The sintering behavior, phase composition, chemical compatibility with silver, and microwave dielectric properties were investigated. All the specimens can be well densified below 950 °C. From the X-ray diffraction analysis, it indicates that the triclinic wolframite ZnMoO4 phase coexists with the tetragonal rutile TiO2 phase, and it is easy for silver to react with ZnMoO4 to form Ag2Zn2(MoO4)3 phase and hard to react with TiO2. When the volume fraction of TiO2 (x value) increasing from 0 to 0.35, the microwave dielectric permittivity of the (1 − x)ZnMoO4-xTiO2 composite ceramics increases from 8.0 to 25.2, the Qf value changes in the range of 32,300-43,300 GHz, and the temperature coefficient τf value varies from −128.9 to 157.4 ppm/°C. At x = 0.158, the mixture exhibits good microwave dielectric properties with a ?r = 13.9, a Qf = 40,400 GHz, and a τf = +2.0 ppm/°C.  相似文献   

11.
12.
BaTi0.87Sn0.13O3 (BTS13) nanopowder was prepared by low-temperature aqueous synthesis (LTAS) method. The evolution of the structure and microstructure of the precursor precipitate, heated at temperatures up to 1000 °C was studied by TGA, FT-IR, SEM and XRD techniques. The dried precipitate showed a microstructure consisting of nano-sized grains (∼40 nm) with great tendency to agglomeration. BaTi0.87Sn0.13O3 single phase was obtained at 800 °C. The ceramics prepared from as-obtained BTS13 powders (60-70 nm) show good dielectric and ferroelectric characteristics. The dielectric constant was about 4800 and the dielectric loss (tan δ) was 0.229 at 1 kHz and at the Curie temperature (31 °C). The remanent polarization (Pr) and the coercive field (EC) of Ba0.97Ho0.03TiO3 ceramics, at 1 kHz, were Pr = 13 μC/cm2 and EC = 0.89 kV/cm. The ferroelectric parameters EC and Pr decrease with increasing frequency in the domain 100 Hz to 10 kHz.  相似文献   

13.
The structure, dielectric properties and phase transition of lithium and potassium modified Bi0.5Na0.5TiO3 ceramics were investigated widely. The phase transition behavior with respect to changes in composition and temperature was investigated using X-ray diffraction analysis, dielectric and ferroelectric characterizations. The experimental results show that there is a diffusion phase transition in (Na1−xKx)0.5Bi0.5TiO3 ceramics at Tm and the diffuseness of the phase transition is more obvious for the samples near the morphotropic phase boundary. In (Na1−xLix)0.5Bi0.5TiO3 system, due to the space charge polarization induced by ions conductivity, the low frequency permittivity increases so remarkably at high temperature that the peak of maximum permittivity vanishes. The hysteresis loops at different temperatures indicate that there is no existence of anti-ferroelectrics in lithium and potassium modified Bi0.5Na0.5TiO3 ceramics above the depolarization temperature Td. The depolarization reason is that the tetragonal nonpolar phase occurs and leads to the macro-micro domain transformation at about Td.  相似文献   

14.
Bi0.5Na0.5TiO3-BaTiO3-Bi0.5K0.5TiO3 (BNT-BT-BKT) lead-free piezoceramics with compositions near the rhombohedral-tetragonal morphotropic phase boundary (MPB) were prepared and investigated. At room temperature, all ceramics show excellent electrical properties. In this study, the best properties were observed in 0.884BNT-0.036BT-0.08BKT, with the remnant polarization, bipolar total strain, unipolar strain, piezoelectric constant, and planar electromechanical coupling factor being 34.4 μC cm−2, 0.25%, 0.15%, 122 pC N−1, and 0.30, respectively. Detailed analysis of the temperature dependence of polarization-electric field (P-E) loops and bipolar/unipolar strain-electric field (S-E) curves of this composition revealed a ferroelectric-antiferroelectric phase transition around 100 °C. Around this temperature, there is a significant shape change in both P-E and S-E curves, accompanied by enhanced strain and decreased polarization; the largest recoverable strain reaches 0.42%. These results can be explained by the formation of antiferroelectric order and the contribution of field-induced antiferroelectric-ferroelectric phase transition to piezoelectric response. Our results indicate that BNT-BT-BKT lead-free piezoceramics can have excellent electrical properties in compositions near the MPB and also reveal some insight into the temperature dependence of the electrical performance with the MPB composition.  相似文献   

15.
The phase evolution, crystal structure and dielectric properties of (1 − x)Nd(Zn0.5Ti0.5)O3 + xBi(Zn0.5Ti0.5)O3 compound ceramics (0 ≤ x ≤ 1.0, abbreviated as (1 − x)NZT-xBZT hereafter) were investigated. A pure perovskite phase was formed in the composition range of 0 ≤ x ≤ 0.05. The B-site Zn2+/Ti4+ 1:1 long range ordering (LRO) structure was detected by both XRD and Raman spectra in x ≤ 0.05 samples. However, this LRO structure became gradually degraded with an increase in x. The dielectric behaviors of the compound ceramic at various frequencies were investigated and correlated to its chemical composition and crystal structure. A gradually compensated τf value was obtained in (1 − x)NZT-xBZT microwave dielectrics at x = 0.03, which was mainly due to the dilution of dielectric constant in terms of Claussius-Mossotti differential equation.  相似文献   

16.
The microwave dielectric properties of La(Mg0.5−xNixSn0.5)O3 ceramics were examined with a view to their exploitation for mobile communication. The La(Mg0.5−xNixSn0.5)O3 ceramics were prepared by the conventional solid-state method at various sintering temperatures. The X-ray diffraction patterns of the La(Mg0.4Ni0.1Sn0.5)O3 ceramics revealed no significant variation of phase with sintering temperatures. Apparent density of 6.71 g/cm3, dielectric constant (?r) of 20.19, quality factor (Q × f) of 74,600 GHz, and temperature coefficient of resonant frequency (τf) of −85 ppm/°C were obtained for La(Mg0.4Ni0.1Sn0.5)O3 ceramics that were sintered at 1550 °C for 4 h.  相似文献   

17.
The microwave dielectric properties and microstructures of (1 − x)La(Mg0.5Ti0.5)O3-x(Ca0.8Sr0.2)TiO3 ceramics, prepared by a mixed oxide route, have been investigated. The forming of solid solutions was confirmed by the XRD patterns and the measured lattice parameters for all compositions. A near zero τf was achieved for samples with x = 0.5, although the dielectric properties varied with sintering temperature. The Q × f value of 0.5La(Mg0.5Ti0.5)O3-0.5(Ca0.8Sr0.2)TiO3 increased up to 1475 °C, after which it decreased. The decrease in dielectric properties was coincident with the onset of rapid grain growth. The optimum combination of microwave dielectric properties was achieved at 1475 °C for samples where x = 0.5 with a dielectric constant ?r of 47.12, a Q × f value of 35,000 GHz (measured at 6.2 GHz) and a τf value of −4.7 ppm/°C.  相似文献   

18.
To improve the temperature stability of piezoelectric properties of Na0.5K0.5NbO3 (KNN)-based ceramics, Bi(Mg2/3Nb1/3)O3 (BMN) was used to modify Na0.5K0.5NbO3 (KNN)-based ceramics by a conventional sintering technique. Piezoelectric and ferroelectric properties of 0.99K0.5Na0.5NbO3-0.01Bi(Mg2/3Nb1/3)O3 ceramics were studied. It is found that 0.01BMN-0.99KNN ceramics exhibits stable piezoelectric properties as the temperature changes due to the composition fluctuation on B sites (d33 ≈ 130 pC/N, dielectric loss tg θ ≤ 5% in the range 25-300 °C). These results indicate that these materials are promising lead-free piezoelectric ceramic candidates for practical applications.  相似文献   

19.
(Na0.5Bi0.5)0.93Ba0.07TiO3 ceramics added with 0.2 wt.% Ln2O3 (Ln = La, Pr, Eu, Gd) were prepared by a citrate method, and the structure and electrical properties of the ceramics were investigated with respect to the size of the lanthanide. All the specimens maintain a coexistence of rhombohedral and tetragonal phases in crystal structure, while no remarkable evolution in microstructure with the lanthanide addition was observed. Compared with (Na0.5Bi0.5)0.93Ba0.07TiO3, the lanthanide addition resulted in an increased diffuseness in phase transition and a decrease in depolarization temperature (Td). The variation in dielectric, piezoelectric and ferroelectric properties with the lanthanide addition presents an evident lanthanide size dependence. The addition of La2O3 or Pr2O3 tailored the electrical properties basically following a soft doping effect, with the specimens added with La2O3 and Pr2O3 attaining high piezoelectric constants (d33) of 188 and 184 pC/N, respectively. By contrast, the Eu2O3 or Gd2O3 addition led to an abnormal change in the electrical properties, which was qualitatively interpreted by an internal stress effect.  相似文献   

20.
《Acta Materialia》2007,55(9):3081-3087
The polarization switching characteristics of lead-free a(Bi0.5Na0.5)TiO3bBaTiO3c(Bi0.5K0.5)TiO3 (abbreviated as BNBK 100a/100b/100c) ferroelectric ceramics are investigated. For the first time, the strain hystereses of BNBK compositions inside and outside the morphotropic phase boundary (MPB) are presented. The total induced electrostrain (ε33,total) and apparent piezoelectric coefficient (d33) first increase dramatically and then decrease gradually as the BNBK composition moves from the tetragonal phase to the MPB and then to the rhombohedral phase. The measured polarization hystereses indicate that the BNBK compositions situated near the rhombohedral side of the MPB typically possess higher coercive field (Ec) and remanent polarization (Pr), while the compositions situated near the tetragonal side of the MPB possess higher apparent permittivity. BNBK 85.4/2.6/12 a composition well within the MPB, exhibits an ε33,total of ∼0.14%, an apparent d33 of 295 pCN−1 and a Pr of 22.5 μC cm−2. These property values suggest a candidate material for lead-free actuator applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号