首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nanoparticles of Eu3+ doped Mg2SiO4 are prepared using low temperature solution combustion technique with metal nitrate as precursor and urea as fuel. The synthesized samples are calcined at 800 °C for 3 h. The Powder X-ray diffraction (PXRD) patterns of the sample reveled orthorhombic structure with α-phase. The crystallite size using Scherer's formula is found to be in the range 50-60 nm. The effect of Eu3+ on the luminescence characteristics of Mg2SiO4 is studied and the results are presented here. These phosphors exhibit bright red color upon excitation by 256 nm light and showed the characteristic emission of the Eu3+ ions. The electronic transition corresponding to 5D0 → 7F2 of Eu3+ ions (612 nm) is stronger than the magnetic dipole transition corresponding to 5D0 → 7F1 of Eu3+ ions (590 nm). Thermoluminescence (TL) characteristics of γ-rayed Mg2SiO4:Eu3+ phosphors are studied. Two prominent and well-resolved TL glows with peaks at 202 °C and 345 °C besides a shoulder with peak at ∼240 °C are observed. The trapping parameters-activation energy (E), order of kinetics (b) and frequency factor (s) are calculated using glow curve shape method and the results obtained are discussed.  相似文献   

2.
This paper reports the photoluminescence (PL) properties of Tb3+ in NaBa4(BO3)3, as well as the time-resolved luminescence properties. The PL excitation spectrum exhibits intense f → f transition absorption; the PL emission spectrum shows the strongest 5D4 → 7F5 emission at 540 nm. The relative intensity of 5D3 emission is much weaker than that of 5D4 emission even in the samples with lower Tb3+ concentration. The 5D3 → 5D4 cross-relaxation produces a marked increase in the 5D3 decay rate with increasing Tb3+ concentrations and introduces a non-exponential component into the initial part of the decay. The dipole-dipole interaction is found to be responsible for the cross-relaxation. The decay curves of 5D4 → 7F5 transition exhibit an initial rise phenomenon. The two exponential fitting indicates that the initial slow rise is attributed to the 5D3 → 5D4 cross-relaxation process.  相似文献   

3.
A novel class of orange-red phosphors namely CaLa2ZnO5 (CLZ) doped with Eu3+ ions were prepared by adopting citrate based sol-gel method. Those were thoroughly characterized by means of XRD, SEM, Tg-DTA, photoluminescent (PL) spectral profiles. PL studies reveal that its emission intensity strongly depends on sintering temperature as well as the dopant ion (Eu3+) concentration. Eu3+ ion doped CaLa2ZnO5 phosphor has a strong excitation at 468 nm, which correspond to the popular emission line from a GaN based blue light-emitting diode (LED) chip. The influence of the preparation method on the luminescence property was studied by comparing the emission performance of phosphors prepared by sol-gel and solid-state reaction methods along with a commercial red phosphor Y2O2S:Eu3+. Thus, the intense red emission (5D0 → 7F2) of the Eu3+ doped CLZ phosphors under blue excitation suggests them to be a potential candidate for the production of white light by blue LEDs.  相似文献   

4.
A series of Eu3+ activated Na3Gd1−xEux(PO4)2 (0 ≤ x ≤ 1) phosphors were synthesized by solid-state reaction method. The structures and photo-luminescent properties of these phosphors were investigated at room temperature. The results of XRD patterns indicate that these phosphors are isotypic to the orthorhombic Na3Gd(PO4)2. The excitation spectra indicate that these phosphors can be effectively excited by near UV (370-410 nm) light. The intensities of magnetic dipole transition 5D0 → 7F1 and forced electric dipole transition 5D0 → 7F2 are comparable, and the energy ratio (5D0 → 7F1/5D0 → 7F2) is 1.1. The emission spectra exhibit strong reddish orange performance (CIE chromaticity coordinates: x = 0.62, y = 0.38), which is due to the 5D0 → 7FJ transitions of Eu3+ ions. The correlation between the structure and the photo-luminescent properties of the phosphors was studied. The energy transfer and concentration quenching of the phosphors were discussed. Na3Gd1−xEux(PO4)2 has a potential application for white light-emitting diodes.  相似文献   

5.
Orange-reddish-emitting phosphor AlPO4:Eu3+ were fabricated by solid-state reactions at high temperature. X-ray diffraction analysis revealed that AlPO4 doped with 3 mol% of Eu3+ (AlPO4:0.03Eu3+) was pure orthorhombic phase. The photoluminescence study shows that the intensity of magnetic dipole transition (5D0 → 7F1) at 594 nm dominates over that of electric dipole transition (5D0 → 7F2) at 613 nm. The optimum concentration of Eu3+ for the highest luminescence is found to be 3 mol%. The PL excitation spectrum is composed of CTB of Eu-O and excitation lines of Eu3+ ions. The strongest excitation lines appeared at 392 nm. The color coordinates, quantum yield and lifetime for AlPO4:0.03Eu3+ were measured. All the spectrum features indicate that AlPO4:Eu3+ might be a promising phosphor for display devices or w-LEDs.  相似文献   

6.
Color-tunable phosphors BaLa2−xEuxWO7 were synthesized via a solid-state reaction. The absorption, excitation, emission and decay curves were obtained to study the luminescence properties. The experimental results indicate that BaLa2−xEuxWO7 phosphors have two regions in the excitation spectra: one is assigned to the charge-transfer state (CTS) band at about 338 nm, and the other is assigned to the intra-4f transitions at 360-600 nm. The emission spectra of BaLa2−xEuxWO7 phosphors excited at 395 nm exhibit a series of sharp peaks, which are attributed to the 5D0 → 7FJ (J = 0, 1, 2, 3, 4) transitions. Luminescence from higher excited states, such as 5D1, 5D2, and 5D3, were also observed at low Eu3+ concentration. The optimal emission intensity of 5D0 → 7F2 red emission is at x = 0.4 (BaLa1.6Eu0.4WO7). The chromaticity coordinates of BaLa2−xEuxWO7 phosphors vary with Eu3+ content from white, orange-red, to red, making it a candidate for a white-light-emitting phosphor in UV-LEDs.  相似文献   

7.
The novel red-emitting phosphors K2Ba(MoO4)2: Eu3+, Sm3+ were prepared by solid-state reaction and their crystal structures, photo luminescent characteristics were investigated. The results show that all samples can be excited efficiently by UV (397 nm) and blue (466 nm) light, which are coupled well with the characteristic emission from UVLED and blue LED, respectively. A small amount of Sm3+, acting as a sensitizer, increased the energy absorption around 400 nm. In the Eu3+-Sm3+ co-doped system, both Eu3+ and Sm3+ f-f transition absorptions are observed in the excitation spectra, the intensities of the main emission line (5D0 → 7F2 transition of Eu3+ at 616 nm) are strengthened because of the energy transition from Sm3+ to Eu3+. The doping concentration of Eu3+-Sm3+ was optimized. The approach to charge compensation was used: Ba2+ → Eu3+/Sm3+ + X (X = F, Cl, and Br), and the influence of charge compensation on the luminescent intensity of phosphors is investigated.  相似文献   

8.
Eu3+ and Sm3+ co-doped CaMoO4 microclews have been successfully synthesized via a facile hydrothermal method directly in surfactant-free environment. The as-prepared phosphor present clew-like agglomerates composed of 40 nm nanosheets under the moderated reaction temperature. The red phosphor CaMoO4:Eu3+, Sm3+ can generate a strong absorption line at 405 nm, originating from 6H5/2 → 6P5/2 transition of Sm3+, which is suitable for the emission of the near-ultraviolet light-emitting diodes (∼400 nm). Energy transfer between Sm3+ and Eu3+ is detected from the varied photoluminescence spectra with different Eu3+ concentrations and the energy transfer mechanism is clarified via the photoluminescence spectra. When Sm3+ is excited (405 nm), the electron is excited from 6H5/2 to 6P5/2, and then relaxed to 4G5/2. It jumps from 4G5/2 to the lower levels corresponding to the emissions of Sm3+; meanwhile, the transfers from 4G5/2 state of Sm3+ ion to 5D0 state of Eu3+ ion come out. The transition of 5D1 → 7FJ (J = 0, 1, 2) does not appear indicating that the transfer from 4G5/2 state of Sm3+ to 5D0 state rather than 5D1 state of Eu3+ is the energy transfer pathway.  相似文献   

9.
A new Eu3+-activated Y2(CO3)3·nH2O phosphor was successfully prepared via the hydrothermal process using urea as a reaction agent. Y2(CO3)3·nH2O:Eu3+ phosphors displayed an intense red emission at 615 nm due to the 5D0 → 7F2 transition of Eu3+ ions under 254 nm excitation. The intensity of this emission was significantly increased with a rise in the hydrothermal temperatures. The study of photoluminescence properties demonstrated that Y3+ ions were replaced by Eu3+ ions in the host lattice at the 9-coordination sites. With an increase in heating temperatures, the morphology of Y2(CO3)3·nH2O:Eu3+ powders changed from a spherical to a rod-like shape. Calcination at elevated temperatures resulted in thermal decomposition of Y2(CO3)3·nH2O:Eu3+ to form Y2O3:Eu3+. The formed Y2O3:Eu3+ powder exhibited a rod-like morphology with an intense red emission.  相似文献   

10.
Eu2+/Sm3+ co-doped silicate glass was prepared by high temperature melting under reducing atmosphere and the Eu2+/Sm3+ co-doped SrSiO3 transparent glass-ceramics were obtained after heat-treatment. X-ray diffraction (XRD) and Raman spectra confirmed the formation of SrSiO3 nano-crystals in the glass matrix. The photoluminescence excitation (PLE) spectra and photoluminescence (PL) spectra of the samples were measured. A broad emission band from 400 nm to 550 nm due to the 4f65d1 → 4f7 transitions of Eu2+ was observed, as well as several sharp emission peaks at 563 nm, 600 nm, 646 nm and 713 nm ascribed to the 4f → 4f transitions of Sm3+. The luminescence properties of the glass ceramics with different molar ratio of Eu2+/Sm3+ were studied and the corresponding chromaticity coordinates were calculated. The ultraviolet light-emitting diode (UV-LED) excitable glass-ceramics emitting white light were obtained by tuning the relative emission intensity of Eu2+ and Sm3+. The results indicate that the Eu2+/Sm3+ co-doped SrSiO3 transparent glass-ceramics can be used as a potential matrix material for White LED under UV-LED excitation.  相似文献   

11.
Monodisperse non-agglomerated Lu2O3:Eu3+ submicrometer spheres were obtained by the homogeneous precipitation technique with subsequent annealing for spheres crystallization. The morphological and structural parameters of the Lu2O3:Eu3+ crystalline spheres prepared were investigated by the electron microscopy methods, thermal analysis (TG-DTA), X-ray diffractometry (XRD), X-ray photoelectron (XPS) and FT-IR spectroscopy. The influence of the annealing temperature on the morphology and sphericity was shown. Eu3+-doped lutetium oxide spheres were characterized by effective luminescence under X-ray excitation in the λ = 575-725 nm range corresponding to 5D0 → 7FJ transitions (J = 0-4) of Eu3+ ions. It was shown that the X-ray luminescence efficiency of the Lu2O3:Eu3+ spherical phosphors prepared strongly depend on annealing temperature and dopant concentration.  相似文献   

12.
Eu3+-activated Li2Zn2(MoO4)3 multiwavelength excited red-emitting phosphors were synthesized via a solid state reaction. The structure and photoluminescence characteristics were investigated by X-ray powder diffraction and fluorescent spectrophotometry, respectively. The excitation spectrum included a strong broadband ranging from 250 to 350 nm and some sharp peaks at 363, 384, 395, 465, and 533 nm, which matchs the radiations of near-UV or blue light-emitting diodes chip well. Upon excitation either of near-UV or blue even green light, the intense red emission with 615 nm peak can be observed, which is ascribed to the 5D0-7F2 transition of Eu3+ ions. The chromaticity coordinates (x = 0.65, y = 0.34) of the as-obtained phosphor is very close to the National Television Standard Committee standard values (x = 0.67, y = 0.33). All these characteristics suggest that Eu3+-doped Li2Zn2(MoO4)3 wavelength-conversion material to be suitable candidate red component for phosphor-converted white light-emitting diodes.  相似文献   

13.
A novel phosphor Sr2P2O7 co-doped with europium ion and chlorine ion was firstly synthesized by solid state reaction under air atmosphere. Its properties were systematically analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and fluorescence spectra. The introduction of chlorine into the system was helpful and necessary to Eu3+ substitute Sr2+ site and subsequently to reduce Eu3+ to Eu2+, XPS results confirmed that some amount of Eu3+ ions could be reduced to Eu2+ ions under air atmosphere at high temperature. The reduction tendency of Eu3+ depends not only on the doping Cl content, but also on the sintering temperature and time. Photoluminescence spectra also revealed that europium ions were present in divalent as well as trivalent oxidation states, the emission peak at 415 nm is ascribed to the typical 5d-4f transition of Eu2+, 592 nm and 613 nm assigned to the characteristic transitions of 5D0-7F1,2 of Eu3+. Such abnormal reduction was attributed to the electronegative defects formed by nonequivalent substitution of Eu3+ on the Sr2+ sites in the investigated phosphors.  相似文献   

14.
Dysprosium-activated Sr3RE2(BO3)4 (RE = Y, La, Gd) phosphors were synthesized by a high temperature solid-state reaction method. The phase uniformity of the phosphors was characterized by X-ray powder diffraction (XRD) and the luminescence characteristics were investigated. The excitation spectra at 575 nm emission show strong spectral bands in the region of 300-500 nm. The emission spectra of the phosphors with 365 nm excitation show three bands centered at 484 nm, 575 nm and 680 nm, which originate from the transitions of 4F9/2 → 6H15/2, 4F9/2 → 6H13/2 and 4F9/2 → 6H11/2 of Dy3+, respectively. The effect of Dy3+ concentration on the emission intensity of the phosphors was investigated. The fluorescence decay curves for 4F9/2 → 6H13/2 excited at 365 nm and monitored at λem of 575 nm were measured. The decay times decreased slowly with increasing Dy3+ doping concentration due to a trap capturing to resonance fluorescence transfer of the activated ions and due to the exchange interactions between activated ion pairs. In order to determine the type of interaction between activated ions, the concentration dependence curves (lg(I/x) versus lg x) of Sr3RE2(BO3)4:Dy3+ (RE = Y, La, Gd) were plotted. The concentration quenching mechanism of the 4F9/2 → 6H13/2 (575 nm) transition of Dy3+ is the d-d interaction. All results indicate these phosphors are promising white-color luminescent materials.  相似文献   

15.
Rare-earth ions (Sm3+ or Eu3+) doped LiSrxBa1−xPO4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) f-f transition phosphor powders were prepared by a high temperature solid-state reaction. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. The results of XRD indicate that the phase structure of the sample changes from LiBaPO4 to LiSrPO4 when x changes from 0 to 1.0. The excitation spectra indicate that only direct excitation of rare earth ions (Sm3+ or Eu3+) can be observed. The doped rare earth ions show their characteristic emission in LiSrxBa1−xPO4, i.e., Eu3+5D0-7FJ (J = 0, 1, 2, 3, 4), Sm3+4G5/2 → 6HJ (J = 5/2, 7/2, 9/2, 11/2), respectively. The dependence of the emission intensities of the LiSrxBa1−xPO4:Sm3+ and LiSrxBa1−xPO4:Eu3+ phosphors on the x value and Ln3+ (Ln3+ = Sm3+, Eu3+) concentration is also investigated.  相似文献   

16.
Eu-doped calcium-deficient hydroxyapatite Ca8.95Eu0.05HPO4(PO4)5OH (designated CDHA:Eu) was prepared via the coprecipitation method and calcined in air. Phase purity, crystal structure and morphology of the CDHA:Eu were characterized using X-ray diffraction spectrometer and scanning electron microscopy. The photoluminescence excitation and emission spectra of Eu2+ and Eu3+ ions were measured using luminescence spectrometer. The emission spectra showed a broad emission band centered at 450 nm corresponded to the typical 4f65d1 → 4f7 transition of Eu2+ ions, and sharp peaks corresponded to the 5D0 → 7FJ (J = 0, 1, 2, 3, 4) transitions of Eu3+ ions. This research was focused on the site-distribution of Eu3+ ions. The Eu3+ in different sites had different spectroscopic features and the charge compensation mechanisms were also discussed.  相似文献   

17.
KSrPO4:Tb3+ phosphors were prepared by a solid-state method and their photoluminescence properties were investigated under vacuum ultraviolet excitation. In the excitation spectrum monitoring at 544 nm, the band in the region of 120-162 nm can be attributed to be the overlap of host absorption and charge transfer transition of O2− → Tb3+, and the band ranging from 162 to 300 nm was assigned to the f-d transition of Tb3+. The photoluminescence spectrum shows that the phosphors exhibited a strong green emission around 544 nm corresponding to the 5D4  7F5 transition of Tb3+ under the excitation of 147 nm. Optimal emission intensity was obtained when x = 7% in KSr1-xPO4:xTb3+ and the luminescent chromaticity coordinates were calculated to be (x = 0.317, y = 0.522) for KSr0.93PO4:7%Tb3+.  相似文献   

18.
Calcium yttrium tetrametagermanates Y2CaGe4O12 doped with Er3+ and Er3+/Yb3+ reveal upconversion emission in visible spectral range under near-infrared excitation, λex = 980 nm. For the solid solution ErxY2−xCaGe4O12 concentration dependencies for the green and red lines of the visible emission around 526 nm (2H11/2 → 4I15/2), 545 nm (4S3/2 → 4I15/2) and 670 nm (4F9/2 → 4I15/2) show the optimal value for the sample x = 0.2. The power dependence of the visible luminescence measured at room temperature in the low-power limit indicates two-photon upconversion process. Direct intensification of the upconversion emission signals has been achieved by ytterbium sensitizing. The other upconversion excitation mechanism in Y2CaGe4O12:Er3+ is discussed for an 808 nm incident laser irradiation. A scheme of excitation and emission routes involving ground/excited state absorption, energy transfer upconversion, nonradiative multiphonon relaxation processes in trivalent lanthanide ions in Y2CaGe4O12:Er3+ and Y2CaGe4O12:Er3+, Yb3+ has been proposed. Conditions for visible emission occurrence under quasi-resonance λex = 1064 nm excitation depending on pump power values are considered. In the low-power regime only near-infrared emission caused by the transition 4I13/2 → 4I15/2 in erbium ions has been detected.  相似文献   

19.
The phosphors BaMg2(PO4)2 doped with Eu2+ and Mn2+ solely or doubly were prepared by solid state reaction, and their luminescent properties were also investigated. Under the excitation of 322 nm, it has been observed a broad blue emission band centered at 417 nm and a red emission band centered at about 665 nm, resulting from Eu2+ and Mn2+, respectively. Resonance-type energy transfers from Eu2+ to Mn2+ were discovered by directly overlapping the emission spectra of Eu2+ and the excitation spectra of Mn2+. According to the changes of relative intensities of Eu2+ and Mn2+ emission, efficiencies of energy transfer were calculated. Based on the principle of energy transfer, the relative intensities of blue and red emission could be tuned by adjusting the contents of Eu2+ and Mn2+.  相似文献   

20.
A series of core-shell bifunctional magnetic-optical YVO4:Ln3+@Fe3O4 (Ln3+ = Eu3+ or Dy3+) nanocomposites have been successfully synthesized via two-step method. The nanocomposites have the advantage of high magnetic responsive and unique luminescence properties. The structure, luminescent and magnetic properties of the nanocomposites were investigated by XRD, TEM, PL and VSM. The maximum emission peaks of the nanocomposites are at 618 nm (doping Eu3+), 574 nm (doping Dy3+). The special saturation magnetization of the nanocomposites is 54 emu/g. The diameter of the nanocomposites is 400-900 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号