首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently we have shown that in fibroblasts (NIH 3T3 and Rat-1 cells) inhibition of protein geranylgeranylation leads to a G0/G1 arrest, whereas inhibition of protein farnesylation does not affect cell cycle distribution. Here we demonstrate that in human tumor cells the geranylgeranyltransferase-I (GGTase-I) inhibitor GGTI-298 blocked cells in G0/G1, whereas the farnesyltransferase (FTase) inhibitor FTI-277 showed a differential effect depending on the cell line. FTI-277 accumulated Calu-1 and A-549 lung carcinoma and Colo 357 pancreatic carcinoma cells in G2/M, T-24 bladder carcinoma, and HT-1080 fibrosarcoma cells in G0/G1, but had no effect on cell cycle distribution of pancreatic (Panc-1), breast (SKBr 3 and MDAMB-231), and head and neck (A-253) carcinoma cells. Furthermore, treatment of Calu-1, Panc-1, Colo 357, T-24, A-253, SKBr 3, and MDAMB-231 cells with GGTI-298, but not FTI-277, induced the protein expression levels of the cyclin-dependent kinase inhibitor p21WAF. HT-1080 and A-549 cells had a high basal level of p21WAF, and GGTI-298 did not further increase these levels. Furthermore, GGTI-298 also induces the accumulation of large amounts of p21WAF mRNA in Calu-1 cells, a cell line that lacks the tumor suppressor gene p53. There was little effect of GGTI-298 on the cellular levels of another cyclin- dependent kinase inhibitor p27KIP as well as cyclin E and cyclin D1. These results demonstrate that GGTase-I inhibitors arrest cells in G0/G1 and induce accumulation of p21WAF in a p53-independent manner and that FTase inhibitors can interfere with cell cycle events by a mechanism that involves neither p21WAF nor p27KIP. The results also point to the potential of GGTase-I inhibitors as agents capable of restoring growth arrest in cells lacking functional p53.  相似文献   

2.
The PTEN/MMAC1 phosphatase is a tumor suppressor gene implicated in a wide range of human cancers. Here we provide biochemical and functional evidence that PTEN/MMAC1 acts a negative regulator of the phosphoinositide 3-kinase (PI3-kinase)/Akt pathway. PTEN/MMAC1 impairs activation of endogenous Akt in cells and inhibits phosphorylation of 4E-BP1, a downstream target of the PI3-kinase/Akt pathway involved in protein translation, whereas a catalytically inactive, dominant negative PTEN/MMAC1 mutant enhances 4E-BP1 phosphorylation. In addition, PTEN/MMAC1 represses gene expression in a manner that is rescued by Akt but not PI3-kinase. Finally, higher levels of Akt activation are observed in human prostate cancer cell lines and xenografts lacking PTEN/MMAC1 expression when compared with PTEN/MMAC1-positive prostate tumors or normal prostate tissue. Because constitutive activation of either PI3-kinase or Akt is known to induce cellular transformation, an increase in the activation of this pathway caused by mutations in PTEN/MMAC1 provides a potential mechanism for its tumor suppressor function.  相似文献   

3.
In the present study, we investigated the involvement of phosphatidylinositol 3-kinase (PI 3-kinase) activity in the progression of vascular smooth muscle cells (VSMCs) throughout the G1 phase of cell cycle. Addition of two selective inhibitors of PI 3-kinase, LY 294002 or wortmannin, to quiescent VSMCs prevented serum-induced DNA synthesis in a dose-dependent manner with IC50 of 8.7 +/- 2.0 microM and 53.9 +/- 8.5 nM, respectively. Time course studies revealed that the two PI 3-kinase inhibitors blocked VSMC proliferation in mid-late G1 phase, about 6 h before the G1/S transition. This G1 growth arrest was due, at least in part, to the reduction of the CDK2 associated kinase activity resulting mainly from the upregulation of the inhibitory protein p27KIP1.  相似文献   

4.
p21WAF1/CIP1 is a downstream effector of the p53 tumor suppressor gene and a universal cyclin-dependent kinase (CDK) inhibitor. To determine the ability of p21WAF1/CIP1 to function as a tumor suppressor, we constructed a replication-defective adenovirus vector containing p21WAF1/CIP1 (Adp21WAF1/CIP1) to effect ectopic overexpression in a p53-defective human astrocytoma cell line, U-373MG. We observed a marked decrease in CDC2 and CDK2 kinase activity associated with a corresponding decrease in the amount of CDC2 but not CDK2 protein; a decreased growth potential of Adp21WAF1/CIP1-infected cells demonstrated by diminished [3H]thymidine incorporation, increased cell doubling time and G1-arrested cell cycle; an association between Adp21WAF1/CIP1-infected cells and inhibition of aneuploid cell accumulation; and an alteration of the malignant phenotype of cells was evidenced by the loss of anchorage-independent growth in soft agar and the failure to induce tumorigenesis in both peripheral and intracerebral xenograft models, including the prevention of tumor formation Adp21WAF1/CIP1 infection 2 days post tumor cell implantation. Adp21WAF1/CIP1. Adp21WAF1/CIP1 appears to be a strong candidate for gene therapy studies based on these studies indicating that Adp21WAF1/CIP1 inhibits proliferation, tumorigenicity and aneuploidy in human brain tumor cells.  相似文献   

5.
PTEN/MMAC1 is a tumor suppressor gene that is mutated in a variety of cancers. PTEN encodes a phosphatase that recognizes phosphoprotein substrates and the phospholipid, phosphatidylinositol-3,4,5-triphosphate. PTEN inhibited cell growth and/or colony formation in all of the epithelial lines tested with one exception. The decrease in cellular proliferation was associated with an induction of apoptosis and an inhibition of signaling through the phosphatidylinositol 3'-kinase pathway. Akt/protein kinase B, a gene whose antiapoptotic function is regulated by phosphatidylinositol-3,4,5-triphosphate, was able to rescue cells from PTEN-dependent death. PTEN, therefore, appears to suppress tumor growth by regulating phosphatidylinositol 3'-kinase signaling.  相似文献   

6.
Transforming growth factor beta 1 (TGF-beta 1) is a potent inhibitor of keratinocyte proliferation and a potential tumor suppressor of squamous cell carcinomas (SCCs). TGF-beta 1 exerts its antiproliferative effects by inhibiting key transitions required for progression from G1 to the S phase of the cell cycle, exemplified by a rapid reduction of c-MYC and inhibition of the G1 cyclin/cyclin-dependent kinases by induction of their inhibitors p21waf1, p27kip1, and p15INK4B. A significant majority of a new series of human SCC cell lines were found to be as sensitive as primary human epidermal keratinocytes to TGF-beta 1 growth inhibition. Only a minority of cell lines derived from late-stage tumors were resistant. An early and rapid increase in p21waf1 and reduction in c-MYC protein levels were important concomitants for TGF-beta 1 growth inhibition; these changes occurred exclusively in each of the sensitive cell lines. Expression of p15INK4B was found to be neither necessary nor sufficient for TGF-beta 1 growth arrest in the sensitive and resistant cell lines, respectively. TGF-beta 1 induced alterations in other cell cycle regulatory molecules, cyclin-dependent kinase 4, cyclin D1, pRB, and p27Kip1, occurred late and were dispensable in some of the sensitive cell lines. Expression of exogenous mycER fusion protein in one of the sensitive cell lines did not render the cells resistant to TGF-beta 1-induced growth arrest nor prevent p21waf1 induction or down-regulation of both c-MYC and mycER proteins. However, in TGF-beta 1-resistant subclones of sensitive mycER-expressing cells, p21waf1 was not induced, whereas both c-MYC and mycER protein levels decreased following TGF-beta 1 treatment. We conclude that TGF-beta 1 activates multiple cell cycle inhibitory pathways dependent upon p21waf1 induction and c-MYC degradation and that it does not function as a tumor suppressor in the majority of SCCs.  相似文献   

7.
8.
Onconase is a 12 kDa protein homologous to pancreatic RNase A isolated from amphibian oocytes which shows cytostatic and cytotoxic activity in vitro, inhibits growth of tumors in mice and is in phase III clinical trials. The present study was aimed to reveal mechanisms by which onconase perturbs the cell cycle progression. Human histiocytic lymphoma U937 cells were treated with onconase and expression of cyclins D3 and E, as well as of the cyclin-dependent kinase inhibitors (CKIs) p16INK4A, p21WAF1/CIP1 and p27KIP1 (all detected immunocytochemically) was measured by multiparameter flow cytometry, in relation to the cell cycle position. Also monitored was the status of phosphorylation of retinoblastoma protein (pRb) by a novel method utilizing mAb which specifically detects underphosphorylated pRb in individual cells. Cell incubation with 170 nM onconase for 24 h and longer led to their arrest in G1 which was accompanied by a decrease in expression of cyclin D3, no change in cyclin E, and enhanced expression of all three CKIs. pRb was underphosphorylated in the onconase arrested G1 cells but was phosphorylated in the cells that were still progressing through S and G2/M in the presence of onconase. The cytostatic effect of onconase thus appears to be mediated by downregulation of cyclin D3 combined with upregulation of p27KIP1, p16INK4A and p21WAF1/CIP1, the events which may prevent phosphorylation of pRb during G0/1 and result in cell arrest at the restriction point controlled by Cdk4/6 and D type cyclins.  相似文献   

9.
Tumor suppressor p53 is a nuclear protein that is induced by DNA damage and is involved in G1 and G2 phase control of the cell cycle. p21WAF1/CIP1/SDI1 (p21), a cyclin-dependent kinase inhibitor, is a downstream target and effector of p53 to induce G1 arrest. Mimosine is a potent reversible late G1 phase blocker of the cell cycle. In this study, we showed that mimosine can increase both p21 mRNA and protein levels, indirectly inhibit cyclin E-associated kinase activity without affecting the cyclin E protein level, block human breast cancer cells (21PT) in the late G1 phase of the cell cycle, and induce a p53-independent p21 pathway in these cells. These results support the possibility of restoring a G1 checkpoint by use of mimosine. They also suggest that the mechanism of the effect of mimosine is complex and may have more than one target in the cell.  相似文献   

10.
PTEN/MMAC1 is a major new tumor suppressor gene that encodes a dual-specificity phosphatase with sequence similarity to the cytoskeletal protein tensin. Recently, we reported that PTEN dephosphorylates focal adhesion kinase (FAK) and inhibits cell migration, spreading, and focal adhesion formation. Here, the effects of PTEN on cell invasion, migration, and growth as well as the involvement of FAK and p130 Crk-associated substrate (p130Cas) were investigated in U87MG glioblastoma cells missing PTEN. Cell invasion, migration, and growth were down-regulated by expression of phosphatase-active forms of PTEN but not by PTEN with an inactive phosphatase domain; these effects were correlated with decreased tyrosine phosphorylation levels of FAK and p130Cas. Overexpression of FAK concomitant with PTEN resulted in increased total tyrosine phosphorylation levels of FAK and p130Cas and effectively antagonized the effects of PTEN on cell invasion and migration and partially on cell growth. Overexpression of p130Cas increased total tyrosine phosphorylation levels of p130Cas without affecting those of FAK; however, although p130Cas could reverse PTEN inhibition of cell invasion and migration, it did not rescue cell growth in U87MG cells. In contrast to FAK, p130Cas could not be shown to interact with PTEN in cells, and it was not dephosphorylated directly by PTEN in vitro. These results suggest important roles of PTEN in the phenotype of tumor progression, and that the effects of PTEN on cell invasion, migration, and growth are mediated by distinct downstream pathways that diverge at the level of FAK.  相似文献   

11.
A wide variety of biological activities including the major metabolic actions of insulin is regulated by phosphatidylinositol (PI) 3-kinase. However, the downstream effectors of the various signaling pathways that emanate from PI 3-kinase remain unclear. Akt (protein kinase B), a serine-threonine kinase with a pleckstrin homology domain, is thought to be one such downstream effector. A mutant Akt (Akt-AA) in which the phosphorylation sites (Thr308 and Ser473) targeted by growth factors are replaced by alanine has now been shown to lack protein kinase activity and, when overexpressed in CHO cells or 3T3-L1 adipocytes with the use of an adenovirus vector, to inhibit insulin-induced activation of endogenous Akt. Akt-AA thus acts in a dominant negative manner in intact cells. Insulin-stimulated protein synthesis, which is sensitive to wortmannin, a pharmacological inhibitor of PI 3-kinase, was abolished by overexpression of Akt-AA without an effect on amino acid transport into the cells, suggesting that Akt is required for insulin-stimulated protein synthesis. Insulin activation of p70 S6 kinase was inhibited by approximately 75% in CHO cells and approximately 30% in 3T3-L1 adipocytes, whereas insulin-induced activation of endogenous Akt was inhibited by 80 to 95%, by expression of Akt-AA. Thus, Akt activity appears to be required, at least in part, for insulin stimulation of p70 S6 kinase. However, insulin-stimulated glucose uptake in both CHO cells and 3T3-L1 adipocytes was not affected by overexpression of Akt-AA, suggesting that Akt is not required for this effect of insulin. These data indicate that Akt acts as a downstream effector in some, but not all, of the signaling pathways downstream of PI 3-kinase.  相似文献   

12.
13.
14.
We have previously shown that there were differential and dramatic decreases of cyclin and cyclin-dependent kinase (CDK) activities in cardiomyocytes during the neonatal period. The activity of CDKs control cell cycle progression, and this activity is regulated positively and negatively by association of CDKs with cyclins and cyclin-dependent kinase inhibitors (CKIs), respectively. While the INK family (p15(INK4B)/p16(INK4A)/p18(INK4C)/p19(INK4D)) of CKIs is not detectable in hearts, the KIP/CIP family (p21(CIP1), p27(KIP1) and p57(KIP2)) of CKIs is detectable in most organs including the heart. Differential and dramatic changes of the KIP/CIP family (p21(CIP1), p27(KIP1) and p57(KIP2)) of CKIs were detected in rat hearts during development. The mRNA and protein levels of p21(CIP1) and p57(KIP2) were readily detectable in hearts at gestational and early postnatal periods and decreased thereafter. The mRNA levels of p27(KIP1) in ventricles were high during the gestational period, and did not change until day 30 postnatal, then were decreased slightly in 90-day-old rats. The protein levels of p27(KIP1) increased significantly in the early postnatal period, then were expressed persistently, although levels decreased slightly in the adult period. However, protein levels of p27(KIP1) in atria did not change during development. Variable immuno-staining patterns of p27(KIP1) were observed at different periods of development and in various locations in myocardium. During the gestational period, approximately 35-50% of myocardial cells in the cardiac wall were p27(KIP1) immuno-positive and were distributed diffusely. These p27(KIP1) immunopositive cells increased predominantly in endocardial and mid-portion areas of ventricular myocardium at the early postnatal period. This heterogenous pattern of p27(KIP1) protein expression persisted to adult hearts though the percentage of p27(KIP1) immuno-positive cells decreased slightly. High magnification revealed that more than 50% of adult cardiomyocytes were p27(KIP1) immuno-positive and that p27(KIP1) was located solely in nuclei. These results indicate that p27(KIP1) may be an important inhibitor of CDK activities in cardiomyocytes during early postnatal development and may block the re-entrance of adult cardiomyocytes into the cell cycle after injury.  相似文献   

15.
The signal transduction pathway by which insulin stimulates glucose transport is not understood, but a role for complexes of insulin receptor substrate (IRS) proteins and phosphatidylinositol (PI) 3-kinase as well as for Akt/protein kinase B (PKB) has been proposed. Here, we present evidence suggesting that formation of IRS-1/PI 3-kinase complexes and Akt/PKB activation are insufficient to stimulate glucose transport in rat adipocytes. Cross-linking of beta1-integrin on the surface of rat adipocytes by anti-beta1-integrin antibody and fibronectin was found to cause greater IRS-1 tyrosine phosphorylation, IRS-1-associated PI 3-kinase activity, and Akt/PKB activation, detected by anti-serine 473 antibody, than did 1 nM insulin. Clustering of beta1-integrin also significantly potentiated stimulation of insulin receptor and IRS-1 tyrosine phosphorylation, IRS-associated PI 3-kinase activity, and Akt/PKB activation caused by submaximal concentrations of insulin. In contrast, beta1-integrin clustering caused neither a change in deoxyglucose transport nor an effect on the ability of insulin to stimulate deoxyglucose uptake at any concentration along the entire dose-response relationship range. The data suggest that (i) beta1-integrins can engage tyrosine kinase signaling pathways in isolated fat cells, potentially regulating fat cell functions and (ii) either formation of IRS-1/PI 3-kinase complexes and Akt/PKB activation is not necessary for regulation of glucose transport in fat cells or an additional signaling pathway is required.  相似文献   

16.
Mammalian cyclin-dependent kinase inhibitors fall into two families, the INK4 and the CIP/KIP. The CIP/KIP family comprises three structurally related members, including p21CiP1/WAF1, p27KIP1, and p57KIP2. These proteins are all capable of inhibiting the progression of the cell cycle by binding and inhibiting G(1) cyclin/cyclin-dependent kinase complexes. In humans, p57KIP2 is expressed specifically in skeletal muscle, heart, brain, kidney, and lung. Human KIP2 resides in 11p15.5, a chromosomal region that is a common site for loss of heterozygosity in certain sarcomas, Wilms' tumors, and tumors associated with the Beckwith-Wiedemann syndrome. Because of the function, selective expression, and chromosomal location of p57KIP2, we undertook the present study to search for potential mutations of KIP2 in a cohort of 126 tumors composed of 75 soft tissue sarcomas and 51 Wilms' tumors. The KIP2 gene was characterized by Southern blot, comparative multiplex PCR, PCR -single-strand conformational polymorphism, and DNA sequencing assays in these neoplasms. Deletions of the KIP2 gene or point mutations at the region encoding the cyclin-dependent kinase inhibitory domain were not found in the tumors analyzed. The absence of KIP2 mutations might indicate that these tumors arise due to defects at a closely linked but separate locus. Alternatively, similarly to the mouse homologue, inactivation of KIP2 could occur via genomic imprinting.  相似文献   

17.
Regulation of neuronal survival by the serine-threonine protein kinase Akt   总被引:2,自引:0,他引:2  
A signaling pathway was delineated by which insulin-like growth factor 1 (IGF-1) promotes the survival of cerebellar neurons. IGF-1 activation of phosphoinositide 3-kinase (PI3-K) triggered the activation of two protein kinases, the serine-threonine kinase Akt and the p70 ribosomal protein S6 kinase (p70(S6K)). Experiments with pharmacological inhibitors, as well as expression of wild-type and dominant-inhibitory forms of Akt, demonstrated that Akt but not p70(S6K) mediates PI3-K-dependent survival. These findings suggest that in the developing nervous system, Akt is a critical mediator of growth factor-induced neuronal survival.  相似文献   

18.
The tumor growth suppressor WAF1/CIP1 was recently shown to be induced by p53 and to be a potent inhibitor of cyclin-dependent kinases. In the present studies, we sought to determine the relationship between the expression of WAF1/CIP1 and endogenous regulation of p53 function. WAF1/CIP1 protein was first localized to the nucleus of cells containing wild-type p53 and undergoing G1 arrest. WAF1/CIP1 was induced in wild-type p53-containing cells by exposure to DNA damaging agents, but not in mutant p53-containing cells. The induction of WAF1/CIP1 protein occurred in cells undergoing either p53-associated G1 arrest or apoptosis but not in cells induced to arrest in G1 or to undergo apoptosis through p53-independent mechanisms. DNA damage led to increased levels of WAF1/CIP1 in cyclin E-containing complexes and to an associated decrease in cyclin-dependent kinase activity. These results support the idea that WAF1/CIP1 is a critical downstream effector in the p53-specific pathway of growth control in mammalian cells.  相似文献   

19.
Hepatocyte growth factor/scatter factor (HGF/SF) treatment of the Madin-Darby canine kidney epithelial cell line causes scattering of cells grown in monolayer culture and the formation of branching tubules by cells grown in collagen gels. HGF/SF causes prolonged activation of both the mitogen-activated protein (MAP) kinase extracellular signal-regulated kinase 2 (ERK2) and the phosphoinositide 3-OH kinase (PI 3-kinase) target protein kinase B (PKB)/Akt; inhibition of either the MAP kinase pathway by the MAP kinase/ERK kinase inhibitor PD98059 or the PI 3-kinase pathway by LY294002 blocks HGF/SF induction of scattering, although in morphologically distinct ways. Expression of constitutively activated PI 3-kinase, Ras, or R-Ras will cause scattering, but activated Raf will not, indicating that activation of the MAP kinase pathway is not sufficient for this response. Downstream of PI 3-kinase, activated PKB/Akt and Rac are both unable to induce scattering, implicating a novel pathway. Scattering induced by Ras or PI 3-kinase is sensitive to PD98059, as well as to LY294002, suggesting that basal MAP kinase activity is required, but not sufficient, for the scattering response. Induction of MDCK cell tubulogenesis in collagen gels by HGF/SF is inhibited by PD98059; expression of activated Ras and Raf causes disorganized growth in this system, but activated PI 3-kinase or R-Ras causes branching tubule formation similar to that seen with HGF/SF treatment. These data indicate that multiple signaling pathways acting downstream of Met and Ras are needed for these morphological effects; scattering is induced primarily by the PI 3-kinase pathway, which acts through effectors other than PKB/Akt or Rac and requires at least basal MAP kinase function. Elevated PI 3-kinase activity induces tubulogenesis, but total inhibition and excess activation of the MAP kinase pathway both oppose this effect.  相似文献   

20.
Recent studies have demonstrated the importance of E-cadherin, a homophilic cell-cell adhesion molecule, in contact inhibition of growth of normal epithelial cells. Many tumor cells also maintain strong intercellular adhesion, and are growth-inhibited by cell- cell contact, especially when grown in three-dimensional culture. To determine if E-cadherin could mediate contact-dependent growth inhibition of nonadherent EMT/6 mouse mammary carcinoma cells that lack E-cadherin, we transfected these cells with an exogenous E-cadherin expression vector. E-cadherin expression in EMT/6 cells resulted in tighter adhesion of multicellular spheroids and a reduced proliferative fraction in three-dimensional culture. In addition to increased cell-cell adhesion, E-cadherin expression also resulted in dephosphorylation of the retinoblastoma protein, an increase in the level of the cyclin-dependent kinase inhibitor p27(kip1) and a late reduction in cyclin D1 protein. Tightly adherent spheroids also showed increased levels of p27 bound to the cyclin E-cdk2 complex, and a reduction in cyclin E-cdk2 activity. Exposure to E-cadherin-neutralizing antibodies in three-dimensional culture simultaneously prevented adhesion and stimulated proliferation of E-cadherin transfectants as well as a panel of human colon, breast, and lung carcinoma cell lines that express functional E-cadherin. To test the importance of p27 in E-cadherin-dependent growth inhibition, we engineered E-cadherin-positive cells to express inducible p27. By forcing expression of p27 levels similar to those observed in aggregated cells, the stimulatory effect of E-cadherin-neutralizing antibodies on proliferation could be inhibited. This study demonstrates that E-cadherin, classically described as an invasion suppressor, is also a major growth suppressor, and its ability to inhibit proliferation involves upregulation of the cyclin-dependent kinase inhibitor p27.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号